会员
智能控制与强化学习:先进值迭代评判设计
王鼎 赵明明 哈明鸣 任进更新时间:2025-01-09 17:01:03
最新章节:后记开会员,本书免费读 >
在人工智能技术的大力驱动下,智能控制与强化学习发展迅猛,先进自动化设计与控制日新月异。本书针对复杂离散时间系统的优化调节、最优跟踪、零和博弈等问题,以实现稳定学习、演化学习和快速学习为目标,建立一套先进的值迭代评判学习控制理论与设计方法。首先,对先进值迭代框架下迭代策略的稳定性进行全面深入的分析,建立一系列适用于不同场景的稳定性判据,从理论层面揭示值迭代算法能够实现离线最优控制和在线演化控制。其次,基于迭代历史信息,提出一种新颖的收敛速度可调节的值迭代算法,有助于加快学习速度、减少计算代价,更高效地获得非线性系统的最优控制律。结合人工智能技术,对无模型值迭代评判学习控制的发展前景也进行了讨论。本书内容丰富、结构清晰、由浅入深、分析透彻,既可作为智能控制、强化学习、优化控制、计算智能、自适应与学习系统等领域研究人员和学生的参考书,又可供相关领域的技术人员使用。
品牌:人邮图书
上架时间:2024-03-01 00:00:00
出版社:人民邮电出版社
本书数字版权由人邮图书提供,并由其授权上海阅文信息技术有限公司制作发行
智能控制与强化学习:先进值迭代评判设计最新章节
查看全部- 后记
- 参考文献
- 10.6 小结
- 10.5 仿真实验
- 10.4.3 零和博弈最优跟踪的增量值迭代算法
- 10.4.2 零和博弈最优调节的增量值迭代算法
- 10.4.1 考虑历史迭代信息的值迭代算法
- 10.4 面向零和博弈的增量值迭代算法
- 10.3.2 零和博弈问题的演化值迭代算法特性
- 10.3.1 零和博弈问题的折扣值迭代算法推导
王鼎 赵明明 哈明鸣 任进
主页
同类热门书
最新上架
- 会员
知识图谱从0到1:原理与Python实战
本书旨在帮助读者全面理解知识图谱的基本原理和概念。通过清晰的解释和实例,读者将深入了解知识图谱的构建、表示、推理等关键知识点。此外,本书通过提供代码实战,引导读者亲自动手构建知识图谱,并应用各种技术和工具进行实践。这种实践性的讲解方法可帮助读者更深入地理解知识图谱的实际应用。本书的目标是帮助读者全面理解知识图谱的基本原理和概念,并通过代码实战构建知识图谱。同时,本书也提供了关于大语言模型与知识图谱计算机9.6万字 - 会员
机器学习的算法分析和实践
本书是一本全面介绍机器学习方法特别是算法的新书,适合初学者和有一定基础的读者。机器学习可以分成三大类别,监督式学习、非监督式学习和强化学习。三大类别背后的算法也各有不同。监督式学习使用了数学分析中函数逼近方法、概率统计中的极大似然方法。非监督式学习使用了聚类和贝叶斯算法。强化学习使用了马尔可夫决策过程算法。机器学习背后的数学部分来自概率、统计、数学分析以及线性代数等领域。虽然用到的数学较多,但是最计算机7.4万字 - 会员
量子人工智能
量子计算与人工智能的交叉融合,促使量子人工智能的不断发展。本书旨在采用对深度学习爱好者友好的方式,构建量子人工智能应用。全书共13章,第1章和第2章系统介绍量子计算机发展脉络和量子计算编程的基础知识。第3~7章分别介绍不同的深度学习方法和在这些算法逻辑上构建量子启发算法的方式,用量子线路中的相位作为神经网络的可学习参数,重构为量子神经网络算子。这些算子可以在PyTorch环境中直接调用。第8章和第计算机7.6万字 - 会员
智能计算技术与应用
本书面向初学者介绍智能计算的相关概念、典型应用,采用研究性学习方法和P-MASE模型,按照引入问题、寻找方法、问题分析、问题求解、效果评价的模式,讲授智能计算编程、数据获取和预处理、数据可视化、预测数据的值、分类问题、聚类分析、神经网络、智能图像识别、时间序列数据的处理等知识,并给出了两个综合案例。本书深入浅出、案例丰富、可操作性强,适合作为高校智能计算相关课程的入门教材,也适合相关技术人员学习参计算机10.1万字 - 会员
ChatGPT漫谈
本书深度探讨了构建和训练ChatGPT模型涉及的核心技术,以及ChatGPT在各种实际应用中的作用。全书精心划分为三部分,其中第1章为第1部分,第2章为第2部分,第3章和第4章为第3部分。首先,详细阐述了机器学习的历史演变与各种学习范式,同时也揭示了在人工智能生成内容(AIGC)领域下,图像处理和自然语言处理技术的历史发展趋势;接下来,对ChatGPT的运行机制和关键算法进行深度解析,包括大规模模计算机10.8万字 - 会员
机器学习教程(微课视频版)
本书兼顾机器学习基础、经典方法和深度学习方法,对组成机器学习的基础知识和基本算法进行了比较细致的介绍,对广泛应用的经典算法如线性回归、逻辑回归、朴素贝叶斯、支持向量机、决策树和集成学习等算法都给出了深入的分析并讨论了无监督学习的基本方法,对深度学习和强化学习进行了全面的叙述,比较深入地讨论了反向传播算法、多层感知机、CNN、RNN和LSTM等深度神经网络的核心知识和结构;对于强化学习,不仅介绍了经计算机20.6万字 - 会员
PyTorch 2.0深度学习从零开始学
PyTorch是一个开源的机器学习框架,它提供了动态计算图的支持,让用户能够自定义和训练自己的神经网络,目前是机器学习领域中的框架之一。《PyTorch2.0深度学习从零开始学》共分15章,内容包括PyTorch概述、开发环境搭建、基于PyTorch的MNIST分类实战、深度学习理论基础、MNIST分类实战、数据处理与模型可视化、基于PyTorch卷积层的分类实战、PyTorch数据处理与模型可计算机11.3万字 - 会员
MindSpore大语言模型实战
随着ChatGPT等大语言模型的迅速发展,大语言模型已经成为人工智能领域发展的快车道,不同领域涌现出各种强大的新模型。开发者想要独立构建、部署符合自身需求的大语言模型,需要理解大语言模型的实现框架和基本原理。本书梳理大语言模型的发展,首先介绍Transformer模型的基本原理、结构和模块及在NLP任务中的应用;然后介绍由只编码(Encoder-Only)到只解码(Decoder-Only)的技术计算机6.6万字 - 会员
华为MindSpore深度学习框架应用开发实战
全书从逻辑上共分3部分。第一部分由第1章和第2章组成,介绍深度学习的基础理论、MindSpore总体架构和编程基础。第二部分由第3~8章组成,介绍MindSpore框架各子系统的具体情况,包括数据处理、算子、神经网络模型开发、数据可视化组件MindInsight、推理、以及移动端AI框架MindSporeLite。第三部分由第9章和第10章组成,介绍使用MindSpore框架开发和训练的经典深度计算机13万字
同类书籍最近更新
- 会员
智能控制与强化学习:先进值迭代评判设计
在人工智能技术的大力驱动下,智能控制与强化学习发展迅猛,先进自动化设计与控制日新月异。本书针对复杂离散时间系统的优化调节、最优跟踪、零和博弈等问题,以实现稳定学习、演化学习和快速学习为目标,建立一套先进的值迭代评判学习控制理论与设计方法。首先,对先进值迭代框架下迭代策略的稳定性进行全面深入的分析,建立一系列适用于不同场景的稳定性判据,从理论层面揭示值迭代算法能够实现离线最优控制和在线演化控制。其次人工智能8.7万字 - 会员
AI帮你赢:人人都能用的AI方法论
本书强调“把AI作为方法”(AI即ArtifcialIntelligence,人工智能)这一核心理念,旨在引导读者掌握与AI对话的关键技巧,并将AI融入工作和生活真正体验AI带给人类的高效与便捷。本书从技术的发展规律人手,探讨了把AI作为方法的必然性和必要性,进一步剖析了算法与哲学在内在逻辑上的贯通性。此外,本书通过丰富多样的案例展示了AI的强大魅力,通过一系列“召唤术”帮助读者运用AI创造性地人工智能9.7万字