参考文献
[1] Ostwald W. Elektrische eigenschaften halbdurchlässiger scheidewände[J].Zeitschrift Für Physikalische Chemie,1890,6(1):71-82.
[2] Donnan F G. Theorie der membrangleichgewichte und membranpotentiale bei vorhandensein von nicht dialysierenden elektrolyten. Ein Beitrag zur physikalisch-chemischen Physiologie[J]. Zeitschrift für Elektrochemie und Angewandte Physikalische Chemie,1911,17(14):572-581.
[3] Michaelis L,Fujita A. The electric phenomen and ion permeability of membranes. II. Permeability of apple peel[J]. Biochem Z,1925,15828-15837.
[4] Sollner KT. Uber mosaikmembranen[J]. Biochem Z,1932,244:370.
[5] Wassenegger H,Karl J. Process of effecting cation exchange:US 2204539[P]. 1940.
[6] Meyer K H,Straus W. La permabilit des membranes VI. Sur le passage du courant electrique a travers des membranes slectives[J]. Helvetica Chimica Acta,1940,23(1):795-800.
[7] Juda W,McRae W A. Coherent ion-exchange gels and membranes[J]. Journal of the American Chemical Society,1950,72(2):1044-1044.
[8] Winger A G,Bodamer G W,Kunin R. Some electrochemical properties of new synthetic ion exchange membranes[J]. Journal of The Electrochemical Society,1953,100(4):178-184.
[9] Nishiwaki T. Concentration of electrolytes prior to evaporation with an electromembrane process[M]//Industrial Process with Membranes. New York:Wiley Interscience,1972.
[10] Kato M,Mihara K. Polarity reversing electrode units and electrical switching means therefor:US 3453201[P]. 1969.
[11] Grot W. Laminates of support material and fluorinated polymer containing pendant side chains containing sulfonyl groups:US 3770567[P]. 1973.
[12] Chlanda F P,Lee L T,Liu K-J. Bipolar membranes and method of making same:US 4116889[P]. 1978.
[13] G. Pourcelly C G. Electrodialysis Water Splitting-Application of Electrodialysis with Bipolar Membranes[M]. Enschede:Twente University Press,2000.
[14] Xu T. Ion exchange membranes:state of their development and perspective[J]. Journal of Membrane Science,2005,263(1):1-29.
[15] 徐铜文,傅荣强(译). 双极膜技术手册[M]. 北京:化学工业出版社,2004.
[16] 刘茉娥. 膜分离技术[M]. 北京:化学工业出版社,2000.
[17] 张维润. 电渗析工程学[M]. 北京:科学出版社,1995.
[18] Hamada M. Brackish water desalination by electrodialysis[J]. Desalination & Water Reuse,1993,2:4.
[19] Kawahara T. Industrial applications of ion-exchange membranes[J]. Desalination & Water Reuse,1995,2(4):26-30.
[20] Siwak L. Here’s how electrodialysis reverses and why electrodialysis reverses works[J]. Int’l Desalination & Water Reuse Quarterly,1993,24.
[21] Rapp H-J.Pfromm P H. Electrodialysis for chloride removal from the chemical recovery cycle of a Kraft pulp mill[J]. Journal of Membrane Science,1998,146(2):249-261.
[22] Zhang W,Miao M J,Pan J F,et al. Separation of divalent ions from seawater concentrate to enhance the purity of coarse salt by electrodialysis with monovalent-selective membranes[J]. Desalination,2017,411:28-37.
[23] Nie X Y,Sun S Y,Sun Z,et al. Ion-fractionation of lithium ions from magnesium ions by electrodialysis using monovalent selective ion-exchange membranes[J]. Desalination,2017,403:128-135.
[24] 孙小寒,苏成龙,王建友. 离子选择性电渗析处理海水淡化浓海水[J]. 水处理技术,2015(11):86-91.
[25] Zhang H Q,Ding R,Zhang Y J,et al. Stably coating loose and electronegative thin layer on anion exchange membrane for efficient and selective monovalent anion transfer[J]. Desalination,2017,410:55-65.
[26] Ge L,Wu B,Li Q H,et al. Electrodialysis with nanofiltration membrane(EDNF) for high-efficiency cations fractionation[J]. Journal of Membrane Science,2016,498:192-200.
[27] Ge L,Wu L,Wu B,et al. Preparation of monovalent cation selective membranes through annealing treatment[J]. Journal of Membrane Science,2014,459:217-222.
[28] Ge L,Liu X H,Wang G H,et al. Preparation of proton selective membranes through constructing H+ transfer channels by acid-base pairs[J]. Journal of Membrane Science,2015,475:273-280.
[29] Hu Y,Wang M,Wang D,et al. Feasibility study on surface modification of cation exchange membranes by quaternized chitosan for improving its selectivity[J]. Journal of Membrane Science,2008,319(1-2):5-9.
[30] Wang M,Jia Y X,Yao T T,et al. The endowment of monovalent selectivity to cation exchange membrane by photo-induced covalent immobilization and self-crosslinking of chitosan[J]. Journal of Membrane Science,2013,442:39-47.
[31] Zhang Z H,Ge S L,Jiang C X,et al. Improving the smoking quality of papermaking tobacco sheet extract by using electrodialysis[J]. Membrane Water Treatment,2014,5(1):31-40.
[32] Li J,Zhou M L,Lin J Y,et al. Mono-valent cation selective membranes for electrodialysis by introducing polyquaternium-7 in a commercial cation exchange membrane[J]. Journal of Membrane Science,2015,486:89-96.
[33] Bauer B,Gerner F J,Strathmann H. Development of Bipolar Membranes[J]. Desalination,1988,68(2-3):279-292.
[34] Bazinet L. Electrodialytic phenomena and their applications in the dairy industry:A review[J]. Critical Reviews in Food Science and Nutrition,2005,45(4):307-326.
[35] Huang C H,Xu T W,Zhang Y P,et al. Application of electrodialysis to the production of organic acids:State-of-the-art and recent developments[J]. Journal of Membrane Science,2007,288(1-2):1-12.
[36] Xu T W. Electrodialysis processes with bipolar membranes(EDBM) in environmental protection-a review[J]. Resources Conservation and Recycling,2002,37(1):1-22.
[37] Huang C H,Xu T W. Electrodialysis with bipolar membranes for sustainable development[J]. Environmental Science & Technology,2006,40(17):5233-5243.
[38] 葛倩倩,葛亮,汪耀明,等. 离子交换膜的发展态势与应用展望[J]. 化工进展,2016,35(06):1774-1785.
[39] Olah G A. Beyond oil and gas:The methanol economy[J]. Angewandte Chemie International Edition,2005,44(18):2636-2639.
[40] Couture G,Alaaeddine A,Boschet F,et al. Polymeric materials as anion-exchange membranes for alkaline fuel cells[J]. Progress in Polymer Science,2011,36(11):1521-1557.
[41] 衣宝廉. 燃料电池的原理、技术状态与展望[J]. 电池工业,2003(1):16-22.
[42] 张世敏,张无敌,尹芳,等. 21 世纪的绿色新能源——燃料电池[J]. 科技创新导报,2008(18):116-117.
[43] Thaller L H.Electrically rechargeable redox flow cells[C]//9th Intersoc Energy Convers Eng Conf Proc,1974:924-928.
[44] 张华民. 储能与液流电池技术[J]. 储能科学与技术,2012,1(1):58-63.
[45] Li Y,Lin X,Wu L,et al. Quaternized membranes bearing zwitterionic groups for vanadium redox flow battery through a green route[J]. Journal of Membrane Science,2015,483:60-69.
[46] Ding C,Zhang H M,Li X F,et al. Vanadium flow battery for energy storage:Prospects and challenges[J]. Journal of Physical Chemistry Letters,2013,4(8):1281-1294.
[47] Kear G,Shah A A,Walsh F C. Development of the all-vanadium redox flow battery for energy storage:A review of technological,financial and policy aspects[J]. International Journal of Energy Research,2012,36(11):1105-1120.
[48] Manohar A K,Kim K M,Plichta E,et al. A high efficiency iron-chloride redox flow battery for large-scale energy storage[J]. Journal of the Electrochemical Society,2015,163(1):A5118-A5125.
[49] Remick R J,Ang P G P. Electrically rechargeable anionically active reduction-oxidation electrical storage-supply system:US 4485154[P]. 1984.
[50] Lai Q,Zhang H,Li X,et al. A novel single flow zinc-bromine battery with improved energy density[J]. Journal of Power Sources,2013,235:1-4.
[51] Parker J F,Chervin C N,Pala I R,et al. Rechargeable nickel—3D zinc batteries:An energy-dense,safer alternative to lithium-ion[J]. Science,2017,356(6336):415-418.
[52] Noack J,Roznyatovskaya N,Herr T,et al. The chemistry of redox-flow batteries[J]. Angewandte Chemie-International Edition,2015,54(34):9775-9808.
[53] Donnan F,Guggenheim E. Exact thermodynamics of membrane equilibrium[J]. Z Phys Chem A,1932,162:346-360.
[54] 安德罗波夫. 理论电化学[M]. 北京:高等教育出版社,1982:142.
[55] Tanaka Y. Limiting current density in the ion exchange membrane electrodialysis[J]. Bulletin of the Society of Sea Water Science,1976,29(5):209-217.
[56] 薛德明,江维达,沈炎章,等. 离子交换膜浓差极化伏-安特性剖析[J]. 水处理技术,1984(02):11-16.
[57] 卢茂,李法西,黄奕普,等. 电渗析中离子交换膜极化机理的研究(Ⅰ)膜的极化与反离子迁移性质的关系[J]. 海水淡化,1980(01):16-27.
[58] 電気透析による水処理[J]. 工業用水,1978:23933.
[59] Mo J. Proceeding of Sino-Japanese Symposium on LM & Ion Exchange & ED & RO & UF[C]. 1994:145-149.
[60] Bard A J. Electrochemical Methods[M]. NewYork:John Wiley & Sons Inc,1980.
[61] 张维润,石松. 电渗析技术资料选编[M]. 北京:中国建筑工业出版社,1977.
[62] 山辺武郎. 日本における塩水淡水化の現状,イオン交換膜電気透析法総括[J]. 日本海水学会志,1968,22(1):18-25.
[63] Onsager L. Deviations from Ohm’s law in weak electrolytes[J]. The Journal of Chemical Physics,1934,2(9):599-615.
[64] Simons R. Strong electric-field effects on proton-transfer between membrane-bound amines and water[J]. Nature,1979,280(5725):824-826.
[65] Simons R,Khanarian G. Water dissociation in bipolar membranes-experiments and theory[J]. Journal of Membrane Biology,1978,38(1-2):11-30.
[66] Simons R. Water splitting in ion exchange membranes[J]. Electrochimica Acta,1985,30(3):275-282.
[67] Simons R. Preparation of a high performance bipolar membrane[J]. Journal of Membrane Science,1993,78(1-2):13-23.
[68] Timashev S.Kirganova E. Mechanism of the electrolytic decomposition of water-molecules in bipolar ion-exchange membranes[J]. Sov Electrochem,1981,17:366-369.
[69] Ramirez P,Aguilella V,Manzanares J,et al. Effects of temperature and ion transport on water splitting in bipolar membranes[J]. Journal of Membrane Science,1992,73(2-3):191-201.
[70] Livage J. Sol-gel synthesis of hybrid materials[J]. Journal of Materials Science,1999,22:201-205.
[71] 徐铜文,何炳林. 电位法测定异价阳离子通过阳离子交换膜时的选择透过性[J]. 分析化学,1997,4:452-455.
[72] 王振坤. 离子交换膜——制备、性能及应用[M]. 北京:化学工业出版社,1985.
[73] 徐铜文,何炳林. 电导法和互扩散法测定不等价反离子通过离子交换膜的扩散系数[J]. 水处理技术,1997,3:125-130.
[74] Strathmann H. Membrane separation technology—principles and applications[M]. NewYork:Elesevier Science BV,1995.
[75] Nasefa M,Hegazy E S. Preparation and applications of ion exchange membranes by radiation-induced graft copolymerization of polar monomers onto non-polar films[J]. Progress in Polymer Science,2004,29:499.
[76] Zschocke P,Quellmalz D. Novel ion-exchange membranes based on an aromatic polyethersulfone[J]. J Membr Sci,1985,22:325-332.
[77] Wilhelm F G. Bipolar Membrane Electrodialysis-Membrane Development and Transport Characteristics[M]. Enschede:Twente University Press(TUP),2001.
[78] Xu T W. Hazardous Materials in the Soil and Atmosphere:Treatment,Removal and Analysis[M]. New York:Nova Science Publishers Inc,2006.
[79] 葛道才. IM-2型强碱性阴离子交换膜的制备及其在苦咸水脱盐中的应用[J]. 膜科学与技术,1989,9:26-30.
[80] Lin M C,Takai N. Fundamental study of noncross-linking anion exchange membranes[J]. J Membr Sci,1994,88:77-83.
[81] Zhang L,Xu T W,Lin Z. Controlled release of ionic drug through the positively charged temperature-responsive membranes[J]. Journal of Membrane Science,2006,281(1-2):491-499.
[82] Lin Z,Xu T,Zhang L. Radiation-induced grafting of N-isopropylacrylamide onto the brominated poly(2,6-dimethyl-1,4-phenylene oxide) membranes[J]. Radiation Physics and Chemistry,2006,75(4):532-540.
[83] Xu T W,Liu Z M,Yang W H. Fundamental studies of a new series of anion exchange membranes:Membrane prepared from poly(2,6-dimethyl-1,4-phenylene oxide)(PPO) and triethylamine[J]. Journal of Membrane Science,2005,249(1-2):183-191.
[84] Li Y,Xu T W,Gong M. Fundamental studies of a new series of anion exchange membranes:Membranes prepared from bromomethylated poly(2,6-dimethyl-1,4-phenylene oxide)(BPPO) and pyridine[J]. Journal of Membrane Science,2006,279(1-2):200-208.
[85] Xu T W,Fu R Q,Yang W H,et al. Fundamental studies on a novel series of bipolar membranes prepared from poly(2,6-dimethyl-1,4-phenylene oxide)(PPO)-Ⅱ. Effect of functional group type of anion-exchange layers on I-V curves of bipolar membranes[J]. Journal of Membrane Science,2006,279(1-2):282-290.
[86] Xu T W,Yang W H. Tuning the diffusion dialysis performance by surface cross-linking of PPO anion exchange membranes-simultaneous recovery of sulfuric acid and nickel from electrolysis spent liquor of relatively low acid concentration[J]. Journal of Hazardous Materials,2004,109(1-3):157-164.
[87] Tongwen X,Weihua Y. Industrial recovery of mixed acid(HF+HNO3) from the titanium spent leaching solutions by diffusion dialysis with a new series of anion exchange membranes[J]. Journal of Membrane Science,2003,220(1):89-95.
[88] Xu T W,Yang W H. Sulfuric acid recovery from titanium white(pigment) waste liquor using diffusion dialysis with a new series of anion exchange membranes-static runs[J]. Journal of Membrane Science,2001,183(2):193-200.
[89] Xu T W,Zha F F. Fundamental studies on a new series of anion exchange membranes:Effect of simultaneous amination-crosslinking processes on membranes ion-exchange capacity and dimensional stability[J]. Journal of Membrane Science,2002,199(1-2):203-210.
[90] Xu T W,Yang W H. Fundamental studies of a new series of anion exchange membranes:Membrane preparation and characterization[J]. Journal of Membrane Science,2001,190(2):159-166.
[91] Xu H,Hu X Z. Preparation of anion exchangers by reductive amination acetylated crosslinked polystyrene[J]. Reactive & Functional Polymers,1999,42:235-242.
[92] 许辉,胡喜章. Friedel-Crafts酰基化法制备聚苯乙烯型阴离子交换树脂[J]. 功能高分子学报,1998,11:513-520.
[93] Nudelman A,Patchornik A.α-Substituted-3-(halomethyl)-4-hydroxybenzeneacetic acids:US 4244885[P]. 1981.
[94] Jung M E,Jung M E,Mazurek M A,Lim R M. A new efficient synthesis of iodomethyl methyl ether[J]. Synthesis,1978,85:88-589.
[95] Wright M E,Toplikar E G,Svejda S A. Details concerning the chloromethylation of soluble high-molecular-weight polystyrene using dimethoxymethane,thionyl chloride,and a lewis acid-a full analysis[J]. Macromolecules,1991,24:5879-5880.
[96] Olah G A,Beal D A,Yu S H,et al. Synthetic methods and reactions. X1. 1-chloro-4-chloro(bromo)methoxybutane and 1,4-bis-[chloro(bromo)methoxy]butane:New convenient halomethylating agents[J]. Synthesis,1974,8:560-561.
[97] Olah G A,David A B,Olah J A. Aromatic substitution. Aromatic substitution. ⅩⅩⅩⅧ. Chloromethylation of benzene and alkylbenzenes with bis(chloromethyl)ether,1,4-bis(chloromethoxy)butane,1-chloro-4-chloromethoxybutane and formaldehyde derivatives[J]. Journal of Organic Chemistry,1976,41:1627-1631.
[98] Warshawsky N S. Novel polymeric halomethylating reagents[J]. Journal of Polymer Science Part A:Polymer Chemistry,1985,23:1843-1846.
[99] 申东升. 芳香烃氯甲基化反应的综述[J]. 化学研究与应用,1999,11(3):229-234.
[100] Tanioka A,Shimizu K,Hosono T,et al. Effect of interfacial state in bipolar membrane on rectification and water splitting[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects,1999,159(2-3):395-404.
[101] Posar F,Ricciardi M. Process for the manufacture of a bipolar membrane and process for the manufacture of an aqueous alkali metal hydroxide solution:US5380413[P]. 1995.
[102] Hurwitz H,Moussaoui R E. Bipolar membrane and method for fabricating such bipolar membrane:US 6217733[P]. 1996.
[103] Hanada F,Ohmura N,Hirayama K. Novel anion-exchange membrane:US 4923611[P]. 1991.
[104] Gnusin N P,Victor Z,Sheldeshov N V,Krikunova N D. Chronopotentiometric examination of MB-1 bipolar membranes in salt solutions[J]. Elektrokhimiya,1980,16:49-52.
[105] Streitwieser A C H H,Kosower E M. Organische Chemie[M]. 1994.
[106] Sheldeshov N V,Victor Z,Pis-menskaya N D,Gnusin N P. Catalysis of water dissociation by the phosphoric-acid groups of an MB-3 bipolar membrane[J]. Elektrokhimiya,1986,22:791-795.
[107] Bauer B. Bipolar membrane for separation by electrodialysis-comprises anion- and cation-selective layers and intermediate ultra-thin layer of polyelectrolyte complex with excess acid or basic gps:DE 4026154[P]. 1992.
[108] Hodgdon R B,Alexander S S. Novel bipolar membranes and process of manufacture:US 4851100[P]. 1989.
[109] Lester T C,LeeGerald J,DegeKang J L. High performance,quality controlled bipolar membrane:US 4057481[P]. 1997.
[110] Parasuraman A,Lim T M,Menictas C,et al. Review of material research and development for vanadium redox flow battery applications[J]. Electrochimica Acta,2013,101:27-40.
[111] Schmidt-Rohr K,Chen Q. Parallel cylindrical water nanochannels in Nafion fuel-cell membranes[J]. Nature materials,2007,7:75-83.
[112] Zhang H Z,Zhang H M,Zhang F X,et al. Advanced charged membranes with highly symmetric spongy structures for vanadium flow battery application[J]. Energy & Environmental Science,2013,6(3):776-781.
[113] Zhang H Z,Zhang H M,Li X F,et al. Nanofiltration(NF) membranes:The next generation separators for all vanadium redox flow batteries(VRBs)[J]. Energy & Environmental Science,2011,4(5):1676-1679.
[114] Li B Y,Wang B G,Liu Z H,et al. Synthesis of nanoporous PVDF membranes by controllable crystallization for selective proton permeation[J]. Journal of Membrane Science,2016,517:111-120.
[115] Wu L,Zhang Z H,Ran J,et al. Advances in proton-exchange membranes for fuel cells:An overview on proton conductive channels(PCCs)[J]. Physical Chemistry Chemical Physics,2013,15(14):4870-4887.
[116] 陈俊良,余军,张梦莎. 聚合物电解质膜水电解器用质子交换膜的研究进展[J]. 化工进展,2017,36(10):3743-3750.
[117] 佐田俊胜著.离子交换膜:制备,表征,改性和应用[M]. 汪锰,任庆春译.北京:化学工业出版社,2015.
[118] Merle G,Wessling M,Nijmeijer K. Anion exchange membranes for alkaline fuel cells:A review[J]. Journal of Membrane Science,2011,377(1-2):1-35.
[119] Tang D,Pan J,Lu S,et al. Alkaline polymer electrolyte fuel cells:Principle,challenges,and recent progress[J].Science China-Chemistry,2010,53(2):357-364.
[120] 中华人民共和国国家质量监督检验检疫总局. 质子交换膜燃料电池 第三部分[S]. 中华人民共和国国家标准,2009.
[121] Peron J,Mani A,Zhao X,et al.Properties of Nafion NR-211 membranes for PEMFCs[J]. Journal of Membrane Science,2010,356(1-2):44-51.
[122] Gu S,He G,Wu X,et al. Preparation and characterization of poly(vinylidene fluoride)/sulfonated poly(phthalazinone ether sulfone ketone) blends for proton exchange membrane[J]. Journal of Applied Polymer Science,2009,116:852-860.
[123] Gu S,He G,Wu X,et al. Synthesis and characteristics of sulfonated poly(phthalazinone ether sulfone ketone)(SPPESK) for direct methanol fuel cell(DMFC)[J].Journal of Membrane Science,2006,281(1-2):121-129.
[124] Wu X,He G,Gu S,et al. Novel interpenetrating polymer network sulfonated poly(phthalazinone ether sulfone ketone)/polyacrylic acid proton exchange membranes for fuel cell[J].Journal of Membrane Science,2007,295(1-2):80-87.
[125] Du L,Yan X,He G,et al. SPEEK proton exchange membranes modified with silica sulfuric acid nanoparticles[J].International Journal of Hydrogen Energy,2012,37(16):11853-11861.
[126] Wells C F,Salam M A. The Effect of pH on the Kinetics of the Reaction of Iron(ii) with Hydrogen Peroxide in Perchlorate Media[J]. Journal of the Chemical Society A:Inorganic,Physical,Theoretical,1968:24-29.
[127] Aparicio M,Mosa J,Etienne M,et al. Proton-conducting methacrylate-silica sol-gel membranes containing tungstophosphoric acid[J]. Journal of Power Sources,2005,145(2):231-236.
[128] Colicchio I,Demco D E,Baias M,et al. Influence of the silica content in SPEEK-silica membranes prepared from the sol-gel process of polyethoxysiloxane:Morphology and proton mobility[J].Journal of Membrane Science,2009,337(1-2):125-135.
[129] Dong F,Li Z,Wang S,et al. Preparation and properties of sulfonated poly(phthalazinone ether sulfone ketone)/zirconium sulfophenylphosphate/PTFE composite membranes[J].International Journal of Hydrogen Energy,2011,36(5):3681-3687.
[130] Kickelbick G. Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale[J]. Progress in Polymer Science,2003,28(1):83-114.
[131] Yan X,He G,Gu S,et al. Imidazolium-functionalized polysulfone hydroxide exchange membranes for potential applications in alkaline membrane direct alcohol fuel cells[J].International Journal of Hydrogen Energy,2012,37(6):5216-5224.
[132] Varcoe J.Slade R. An electron-beam-grafted ETFE alkaline anion-exchange membrane in metal-cation-free solid-state alkaline fuel cells[J]. Electrochemistry Communications,2006,8(5):839-843.
[133] Ran J,Wu L,Lin X C,et al.Synthesis of soluble copolymers bearing ionic graft for alkaline anion exchange membrane[J]. RSC Advances,2012,2(10):4250-4257.
[134] Zhao B,He G,El Hamouti I,et al. A novel strategy for constructing a highly conductive and swelling-resistant semi-flexible aromatic polymer based anion exchange membranes[J]. International Journal of Hydrogen Energy,2017,42(15):10228-10237.
[135] Yang C C,Chiu S J,Lee K T,et al. Study of poly(vinyl alcohol)/titanium oxide composite polymer membranes and their application on alkaline direct alcohol fuel cell[J]. Journal of Power Sources,2008,184(1):44-51.
[136] He S S,Frank C W. Facilitating hydroxide transport in anion exchange membranes via hydrophilic grafts[J]. Journal of Materials Chemistry A,2014,2(39):16489-16497.
[137] Yan X M,Sun J H,Gao L,et al. A novel long-side-chain sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) membrane for vanadium redox flow battery[J]. International Journal of Hydrogen Energy,2018,43(1):301-310.
[138] Pan J,Chen C,Zhuang L,et al. Designing advanced alkaline polymer electrolytes for fuel cell applications[J]. Accounts of Chemical Research,2012,45(3):473-481.
[139] Yang Z J,Zhou J H,Wang S W,et al. A strategy to construct alkali-stable anion exchange membranes bearing ammonium groups via flexible spacers[J]. Journal of Materials Chemistry A,2015,3(29):15015-15019.
[140] Zhu L,Pan J,Wang Y,et al. Multication side chain anion exchange membranes[J]. Macromolecules,2016,49(3):815-824.
[141] Hossain M M,Hou J Q,Wu L,et al. Anion exchange membranes with clusters of alkyl ammonium group for mitigating water swelling but not ionic conductivity[J]. Journal of Membrane Science,2018,550:101-109.
[142] Wu X M,Chen W T,Yan X M,et al. Enhancement of hydroxide conductivity by the di-quaternization strategy for poly(ether ether ketone) based anion exchange membranes[J]. Journal of Materials Chemistry A,2014,2(31):12222-12231.
[143] Gong X,He G,Yan X,et al. Electrospun nanofiber enhanced imidazolium-functionalized polysulfone composite anion exchange membranes[J]. RSC Advances,2015,5(115):95118-95125.
[144] Wang L,Hickner M A. Highly conductive side chain block copolymer anion exchange membranes[J]. Soft Matter,2016,12(24):5359-5371.
[145] 刘平,郭伟男,陈晓,等. 质子传导膜制备方法放大与膜性能表征[J]. 膜科学与技术,2012,32(2):24-29.
[146] Handy S T.Okello M. The 2-position of imidazolium ionic liquids:Substitution and exchange[J]. The Journal of Organic Chemistry,2005,70:1915-1918.
[147] Zhang B,Kaspar R B,Gu S,et al. A New Alkali-Stable phosphonium cation based on fundamental understanding of degradation mechanisms[J]. Chem Sus Chem,2016,9(17):2374-2379.
[148] Marino M G,Kreuer K D. Alkaline stability of quaternary ammonium cations for alkaline fuel cell membranes and ionic liquids[J]. Chem Sus Chem,2015,8(3):513-523.
[149] Zhu Y A,He Y B,Ge X L,et al.A benzyltetramethylimidazolium-based membrane with exceptional alkaline stability in fuel cells:Role of its structure in alkaline stability[J]. Journal of Materials Chemistry A,2018,6(2):527-534.
[150] Hugar K M,Kostalik H A,Coates G W. Imidazolium cations with exceptional alkaline stability:A systematic study of structure-stability relationships[J]. Journal of the American Chemical Society,2015,137(27):8730-8737.
[151] Klinkmann H.Vienken J. Membranes for dialysis[J]. Nephrology Dialysis Transplantation,1995,10(supp3):39-45.
[152] 中垣正幸,清水博. 膜处理技术大系[M]. 东京:フッテクノッステム株式会社,1991.
[153] Meares P. Membrane Separation Processes[M]. Amsterdam; New York :Elsevier Science & Technology,1976.
[154] Ho W,Sirkar K. Membrane Bandbook[M]. Switzerland AG:Springer Science & Business Media,2012.
[155] 村尚史,酒井清孝,白田利胜. 膜分离技术マニュアル[M]. 东京:株式会社アイピ- シ-,1990.
[156] Luo J Y,Wu C M,Xu T W,et al. Diffusion dialysis-concept,principle and applications[J]. Journal of Membrane Science,2011,366(1-2):1-16.
[157] 徐铜文,李传润. 一种螺旋卷式扩散渗析膜组件及其制备方法:CN 101983756[P]. 2010-04-09.
[158] Oh S J,Moon S H,Davis T. Effects of metal ions on diffusion dialysis of inorganic acids[J]. Journal of Membrane Science,2000,169(1):95-105.
[159] 张维润,钟学文,胡兆银,等. 电渗析隔网的试验研究——(Ⅲ)网格对传质效果的影响与经济评价[J]. 水处理技术,1982(04):14-20.
[160] OSW Report[J]. 1967,Contract No. 14-01-0001-963F.
[161] Zhong X W,Zhang W R,Hu Z Y,et al. Experimental study of flow distribution features in the electrodialyzer[J]. Desalination,1985,56:413-419.
[162] Kuhn A T,Mortimer C J. The efficiency of chlorine evolution in dilute brines on ruthenium dioxide electrodes[J]. Journal of Applied Electrochemistry,1972,2(4):283-287.
[163] Buckley D N,Burke L D. The oxygen electrode. Part 6.-Oxygen evolution and corrosion at iridium anodes[J]. Journal of the Chemical Society,Faraday Transactions 1:Physical Chemistry in Condensed Phases,1976,72(0):2431-2440.
[164] Louka T. The reason for the loss of activity of titanium anodes coated with a layer of RuO2 and TiO2[J]. Journal of Applied Electrochemistry,1977,7(3):211-214.
[165] Vijh A K,Blanger G. The anodic dissolution rates of noble metals in relation to their solid state cohesion[J]. Corrosion Science,1976,16(11):869-872.
[166] Faita G,Fiori G. Anodic discharge of chloride ions on oxide electrodes[J]. Journal of Applied Electrochemistry,1972,2(1):31-35.
[167] Qu J-X,Liu S-M. Electrode for electrodialysis[J]. Desalination,1983,46(1):233-242.
[168] 曲敬绪. 电渗析钛涂钌电极的制作和应用[J]. 水处理技术,1994,(1):22-26.
[169] 曲敬绪,刘淑敏. 不锈钢在一些溶液中的阳极行为[J]. 水处理技术,1981,(3):14-21.
[170] 莫剑雄,刘淑敏. 对电渗析器用铅电极的探讨[J]. 水处理技术,1982,(2):21-27.
[171] 中华人民共和国行业标准. 电渗析技术:HY/T034.1-HY/T034.4[S]. 北京:海洋出版社,1995.
[172] 中国建筑标准设计研究所. 全国通用建筑标准设计给水排水标准图集:电渗析器,JSJT-202,91S430[M]. 1991.
[173] Wilson J R. Demineralization by Electrodialysis[M]. London:Butterworths Scientific Publications,1960.
[174] 石松. 防止电渗析海水淡化器内部产生沉淀的研究[M]//海军医学研究所论文汇编,1964:233-237.
[175] 宋序彤. 应用电导率测定天然水含盐量的研究[J]. 水处理技术,1981,7:68-70.
[176] 宋序彤,陈光. 不同水质和水温对电渗析极限电流影响的研究[J]. 水处理技术,1982(3):15-28.
[177] 薛德明,黄奕普. 不同电解质溶液中离子交换膜电渗析极化行为的研究[J]. 膜科学与技术,1983(2):47-64.
[178] Mason E A,Kirkham T A. Design of electrodialysis equipment[J]. Chemical Engineering Progress Symposium Series,1959,25:71.
[179] 中华人民共和国行业标准. 电渗析技术,脱盐方法:HY/T034.4[S]. 北京:海洋出版社,1995.
[180] Meller F. Electrodialysis-Electrodialysis Reversal Technology[M]. Watertown:Ionics Incorporated,1984:35.
[181] Valcour H C. Recent applications of EDR[J]. Desalination,1985,54:163-183.
[182] Katz W E. The electrodialysis reversal(EDR) process[J]. Desalination,1979,28(1):31-40.
[183] 孙振惠. 引进电渗析的简况及其评价[J]. 水处理技术,1990(2):158-163.
[184] Katz W E. Desalination by ED and EDR—state-of-the-art in 1981[J]. Desalination,1982,42(2):129-139.
[185] S S G. Design of the world’s largest electrodialysis installation[C]//Proceedings of the 3th International Symposium on Fresh Water from the Sea,1970:2267-280.
[186] V B. The 5000m3/d combined ion exchange-electrodialysis desalination plant at Bridisi[C]//Proceedings of the 4th International Symposium on Fresh Water from the Sea,1973:3151-3168.
[187] Valero F,Barceló A,Arbós R. Electrodialysis technology-theory and applications,in Desalination,Trends and Technologies[M]. Croatia:InTech,2011.
[188] Segarra J,Iglesias A,Prez J,et al. Construcción de la planta con mayor capacidad de producción mundial con tecnología EDR para agues regeneradas[J]. Tecnología del Agua,2009,309:56-62.
[189] Valero F,Arbós R. Desalination of brackish river water using Electrodialysis Reversal(EDR):Control of the THMs formation in the Barcelona(NE Spain) area[J]. Desalination,2010,253(1):170-174.
[190] Valero F,Tous J. Arbós R In Mejora de la calidad salnitaria del agua durante el primer año de explotación de la etapa de electrodialisis reversible(EDR) en la ETAP del Llobregat[C]//Proceedings of the Ⅶ Congreso AEDYR,Barcelona octubre,2010.
[191] Leitz F B. High temperature electrodialysis[C]//Proceedings of the 4th International Symposium on Fresh Water from the Sea,1973:3195.
[192] Leitz F B. Desalination of sea water by electrodialysis[C]//Proceedings of the 5th International Symposium on Fresh Water from the Sea,1976:105-114.
[193] 小森良三. 高温电气透析[J]. 日本海水学会志,1978,32(4):222-229.
[194] Shi S,Chen P-Q. Design and field trials of a 200 m3/day sea water desalination by electrodialysis[J]. Desalination,1983,46(1):191-196.
[195] 宋德政,黄林金. 西沙200M~3/D脱硼装置的设计和运行[J]. 水处理技术,1986,12(1):24-27.
[196] 中华人民共和国行业标准.电渗析技术:HY/T034.5-1994[S]. 北京:海洋出版社,1995.
[197] 徐铜文. 扩散渗析法回收工业酸性废液的研究进展[J]. 水处理技术,2004,30(2):63-66.
[198] 张启修,张传福. 离子交换膜分离技术在冶金中的应用[J]. 膜科学与技术,2001,21(2):37-43.
[199] 纪钦洪,熊亮,于广欣,等. 煤化工高盐废水处理技术现状及对策建议[J]. 现代化工,2017,(12):1-4.
[200] 童莉,郭森,周学双. 煤化工废水零排放的制约性问题[J]. 化工环保,2010(05):371-375.
[201] 陈海斌. 煤化工反渗透浓盐水处理和回用的探讨[J]. 神华科技,2012(04):86-89.
[202] 刘志学. 煤化工废水处理技术运行实况调研[J]. 煤炭加工与综合利用,2016(02):11-14,18.
[203] 张建飞,权秋红,石维平,等. 一种多级电驱动离子膜处理高含盐废水的方法:CN 105384300[P]. 2015-12-23.
[204] 陈业钢,吴晓华. 一种煤化工浓盐水蒸发结晶分盐装置:CN 204417276[P]. 2015-1-18.
[205] 陈业钢,吴晓华. 一种低能耗煤化工浓盐水分质结晶组合装置:CN 205011538[P]. 2015-4-19.
[206] 金燕,张关永,许志立,等. 电渗析法进行胱氨酸母液脱盐的研究[J]. 氨基酸和生物资源,1995(01):13-15.
[207] Grib H,Belhocine D,Lounici H,et al. Desalting of phenylalanine solutions by electrodialysis with ion-exchange membranes[J]. Journal of Applied Electrochemistry,2000,30(2):259-262.
[208] Liu L-F,Yang L-L,Jin K-Y,et al. Recovery of l-tryptophan from crystallization wastewater by combined membrane process[J]. Separation and Purification Technology,2009,66(3):443-449.
[209] Diblikova L,Curda L,Homolova K. Electrodialysis in whey desalting process[J]. Desalination and Water Treatment,2010,14(1-3):208-213.
[210] Simova H,Kysela V,Cernin A. Demineralization of natural sweet whey by electrodialysis at pilot-plant scale[J]. Desalination and Water Treatment,2010,14(1-3):170-173.
[211] 刘贤杰,陈福明. 电渗析技术在酱油脱盐中的应用[J]. 中国调味品,2004(04):17-21.
[212] Fidaleo M,Moresi M,Cammaroto A,et al. Soy sauce desalting by electrodialysis[J]. Journal of Food Engineering,2012,110(2):175-181.
[213] Strathmann H,Krol J J,Rapp H J,et al. Limiting current density and water dissociation in bipolar membranes[J]. Journal of Membrane Science,1997,125(1):123-142.
[214] Wang Q,Wu B,Jiang C,et al. Improving the water dissociation efficiency in a bipolar membrane with amino-functionalized MIL-101[J]. Journal of Membrane Science,2017,524370-524376.
[215] Liu X,Jian X,Yang H,et al. A photocatalytic graphene quantum dots-Cu2O/bipolar membrane as a separator for water splitting[J]. New Journal of Chemistry,2016,40(4):3075-3079.
[216] McDonald M B,Bruce J P,McEleney K,et al. Reduced graphene oxide bipolar membranes for integrated solar water splitting in optimal pH[J]. Chem Sus Chem,2015,8(16):2645-2654.
[217] McDonald M B,Freund M S. Graphene oxide as a water dissociation catalyst in the bipolar membrane interfacial layer[J]. ACS Applied Materials & Interfaces,2014,6(16):13790-13797.
[218] Liu Y,Chen J,Chen R,et al. Effects of multi-walled carbon nanotubes on bipolar membrane properties[J]. Materials Chemistry and Physics,2018,203:259-265.
[219] 王伟,傅荣强,刘兆明. 双极膜电渗析由葡萄糖酸钠制备葡萄糖酸的实验研究[J]. 膜科学与技术,2017,37(1):107-113.
[220] 黄川徽,李应生,徐铜文,等. 双极膜法生产葡萄糖酸的规模化研究[J]. 中国科学技术大学学报,2008,38(6):656-659.
[221] Choi J H,Kim S H.Moon S H. Recovery of lactic acid from sodium lactate by ion substitution using ion-exchange membrane[J]. Separation and Purification Technology,2002,28(1):69-79.
[222] Moresi M.Sappino F. Economic feasibility study of citrate recovery by electrodialysis[J]. Journal of Food Engineering,1998,35(1):75-90.
[223] Boniardi N,Rota R,Nano G,et al. Lactic acid production by electrodialysis. 2. Modelling[J]. Journal of Applied Electrochemistry,1997,27(2):135-145.
[224] Boniardi N,Rota R,Nano G,et al. Lactic acid production by electrodialysis. 1. Experimental tests[J]. Journal of Applied Electrochemistry,1997,27(2):125-133.
[225] Wang Z X,Luo Y B,Yu P. Recovery of organic acids from waste salt solutions derived from the manufacture of cyclohexanone by electrodialysis[J]. Journal of Membrane Science,2006,280(1-2):134-137.
[226] Belafi-Bako K,Nemestothy N,Gubicza L. A study on applications of membrane techniques in bioconversion of fumaric acid to L-malic acid[J]. Desalination,2004,162(1-3):301-306.
[227] Widiasa I N,Sutrisna P D,Wenten I G. Performance of a novel electrodeionization technique during citric acid recovery[J]. Separation and Purification Technology,2004,39(1-2):89-97.
[228] Paidar M,Fateev V.Bouzek K. Membrane electrolysis—History,current status and perspective[J]. Electrochimica Acta,2016,209:737-756.
[229] Al-musleh E I,Mallapragada D S,Agrawal R. Continuous power supply from a baseload renewable power plant[J]. Applied Energy,2014,122:83-93.
[230] Gottesfeld S,Dekel D R,Page M,et al. Anion exchange membrane fuel cells:Current status and remaining challenges[J].Journal of Power Sources,2018,375:170-184.
[231] Biyikoglu A. Review of proton exchange membrane fuel cell models[J]. International Journal of Hydrogen Energy,2005,30(11):1181-1212.
[232] Li X G,Sabir M. Review of bipolar plates in PEM fuel cells:Flow-field designs[J]. International Journal of Hydrogen Energy,2005,30(4):359-371.
[233] Wang L,Liu H T. Performance studies of PEM fuel cells with interdigitated flow fields[J]. Journal of Power Sources,2004,134(2):185-196.
[234] Kirubakaran A,Jain S,Nema R. A review on fuel cell technologies and power electronic interface[J]. Renewable and Sustainable Energy Reviews,2009,13(9):2430-2440.
[235] 刘建国,孙公权. 燃料电池概述[J]. 物理,2004(02):79-84.
[236] 谢聪鑫,郑琼,李先锋,等. 液流电池技术的最新进展[J]. 储能科学与技术,2017,6(5):1050-1057.
[237] Wei X,Xu W,Vijayakumar M,et al. TEMPO-Based catholyte for high-energy density nonaqueous redox flow batteries[J].Advanced Materials,2014,26(45):7649-7653.
[238] Ding Y,Zhao Y,Yu G. A membrane-free ferrocene-based high-rate semiliquid battery[J]. Nano Letters,2015,15(6):4108-4113.
[239] Wei X,Xu W,Huang J,et al.Radical compatibility with nonaqueous electrolytes and its impact on an all-organic redox flow battery[J]. Angewandte Chemie-International Edition,2015,54(30):8684-8687.
[240] Xi X,Li X,Wang C,et al. Non-aqueous lithium bromine battery of high energy density with carbon coated membrane[J]. Journal of Energy Chemistry,2017,26(4):639-646.
[241] Lin K X,Chen Q,Gerhardt M R,et al. Alkaline quinone flow battery[J].Science,2015,349(6255):1529-1532.
[242] Huskinson B,Marshak M P,Suh C,et al.A metal-free organic-inorganic aqueous flow battery[J]. Nature,2014,505(7482):195-198.
[243] Janoschka T,Martin N,Martin U,et al. An aqueous,polymer-based redox-flow battery using non-corrosive,safe,and low-cost materials[J]. Nature,2015,527(7576):78-81.
[244] Carmo M,Fritz D L,Mergel J,et al. A comprehensive review on PEM water electrolysis[J]. International Journal of Hydrogen Energy,2013,38(12):4901-4934.
[245] 吴曦,徐士鸣,吴德兵,等. 逆电渗析法热-电转换系统循环工质匹配准则[J]. 化工学报,2016,67(S2):326-332.
[246] Jia Z,Wang B,Song S,et al.Blue energy:Current technologies for sustainable power generation from water salinity gradient[J]. Renewable and Sustainable Energy Reviews,2014,3:191-100.
[247] Audinos R. Ion-Exchange membrane processes for clean industrial chemistry[J]. Chemical engineering & technology,1997,20(4):247-258.
[248] Xu T,Fu R,Huang C. Towards the cleaning production using electrodialysis with bipolar membranes-a review [J]. Trends in Chemical Engineering,2006,10:17-29.
[249] Takahashi K,Umehara K,Cruz G P T,et al. Mutual separation of two monovalent metal ions by multistage electrodialysis[J]. Chemical Engineering Science,2005,60(3):727-734.
[250] Goldstein I S.Method for recovering acid from an acid-sugarhydrolysate:US 5244553[P]. 1993.
[251] Frenzel Ⅰ,Holdik H,Stamatialis D F,et al.Chromic acid recovery by electro-electrodialysis:Ⅱ. Pilot scale process,development,and optimization[J]. Separation and Purification Technology,2005,47(1):27-35.
[252] Cifuentes L,Ortiz R,Casas J. Electrowinning of copper in a lab-scale squirrel-cage cell with anion membrane[J]. AIChE Journal,2005,51(8):2273-2284.
[253] 徐铜文. 离子交换膜的重大国家需求和创新研究[J]. 膜科学与技术,2008(5):1-10.
[254] 马洪运,吴旭冉,王保国. 双极膜分离技术及应用进展[J]. 化工进展,2013(10):2274-2278.
[255] McDonald M B,Ardo S,Lewis N S,et al. Use of bipolar membranes for maintaining steady-state ph gradients in membrane-supported,Solar-driven water splitting[J]. Chem Sus Chem,2014,7(11):3021-3027.
[256] Vermaas D A,Sassenburg M,Smith W A. Photo-assisted water splitting with bipolar membrane induced pH gradients for practical solar fuel devices[J]. Journal of Materials Chemistry A,2015,3(38):19556-19562.
[257] 陈霞,蒋晨啸,徐铜文,等. 反向电渗析(RED) 在新能源及环境保护应用中的研究进展[J]. 化工学报,2018,69(1):188-202.
[258] Zhengjin Y,Liuchuan T,Daniel P T,et al. Alkaline benzoquinone aqueous flow battery for large-scale storage of electrical energy[J]. Advanced Energy Materials,2018,8(8):1702056.
[259] Yang Z,Guo R,Malpass-Evans R,et al. Highly conductive anion-exchange membranes from microporous tröger’s base polymers[J]. Angewandte Chemie-International Edition,2016,128(38):11671-11674.