R Data Visualization Recipes
上QQ阅读APP看书,第一时间看更新

How to do it...

  1. Make sure that axes labels stand for full names by using the xlab() and ylab() functions:
> h1 <- core_plot + xlab('petal length (centimeters)') +
ylab(' petal width (centimeters)')
  1. Pick better shapes, and inside and outside colors using the scale_*_manual() functions:
> h2 <- h1 +
scale_colour_manual(values = c('setosa' = 'magenta4',
'versicolor' = 'darkorange4',
'virginica' = 'steelblue4'),
name = 'Iris species') +
scale_fill_manual(values = c('setosa' = 'magenta',
'versicolor' = 'darkorange',
'virginica' = 'steelblue'),
name = 'Iris species') +
scale_shape_manual(values = c('setosa' = 21,
'versicolor' = 22,
'virginica' = 24),
name = 'Iris species')
  1. Grow the axes bigger, while accordingly labeling each break with scale_*_continuous():
> h3 <- h2 + 
scale_x_continuous(labels = 1:7, breaks = 1:7, minor_breaks = 0) +
scale_y_continuous(labels = sprintf('%.2f',seq(0,2.5,.25)),
breaks = seq(0,2.5,.25),
minor_breaks = 0)
  1. Resize the text and relocate the legends using theme():
> h4 <- h3 +
theme(legend.justification = c('left', 'top'),
legend.position = c(.65,.25),
legend.background = element_rect(color = "black",
size = 1,
linetype = "solid"),
legend.text = element_text(size = 13),
legend.title = element_text(size = 13),
axis.text = element_text(size = 15),
axis.title = element_text(size = 15))
> h4

Finally, we have got something that can be considered publication quality:

Figure 2.14 - Publication quality scatterplot.