![基于加权多维标度的无线信号定位理论与方法](https://wfqqreader-1252317822.image.myqcloud.com/cover/741/36511741/b_36511741.jpg)
5.3 基于加权多维标度的定位方法2
5.3.1 标量积矩阵的构造
方法2中标量积矩阵的构造方式与方法1中有所不同。首先令
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_322.jpg?sign=1739125352-fWeAFnIy2RZFT4yAcGk4uqbGyfA0d73n-0-d0eb610a688857f72a75629d773842ca)
(5.96)
利用传感器和辐射源的位置向量定义如下复坐标矩阵[9]:
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_323.jpg?sign=1739125352-qaZ2VZ2l7R2ZeE5GjyTFmA8oE86QKBOJ-0-38a38a8c74d67593a1d225ae6e8d3876)
(5.97)
式中
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_324.jpg?sign=1739125352-mH1RHsK1RrMCSsN7w3HURtVDLlGqBkL4-0-eaf4b2097be74bf475a921097823f748)
(5.98)
假设为列满秩矩阵,即有
。然后构造如下标量积矩阵:
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_327.jpg?sign=1739125352-B9Ytck6eEaWIF1yJ379Rz1rkfMjIbNVd-0-d84895444adac87e8f3cea5cdb7d6fae)
(5.99)
根据命题2.12可知,矩阵可以表示为
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_329.jpg?sign=1739125352-TltI3zN7jBklzxf9uk7vzaffMenvB9i0-0-58adafda6b5e7982fd2ee6043082b0f9)
(5.100)
式中
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_330.jpg?sign=1739125352-xREmxaZt3SFfiGZtaylWEXQX2w1clm9w-0-1f2d24d388b7ce33912f54fd1ad252e4)
(5.101)
式(5.100)和式(5.101)提供了构造矩阵的计算公式,相比于方法1中的标量积矩阵
,方法2中的标量积矩阵
的阶数增加了1维。现对矩阵
进行特征值分解,可得
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_335.jpg?sign=1739125352-4IEmljd9RpP3blwW6eDPfB8ejTzssOrD-0-2f2110d39bd99d377488d748114114fd)
(5.102)
式中,,为特征向量构成的矩阵;
,为特征值构成的对角矩阵,并且假设
由于
,则有
。若令
、
及
,则可以将矩阵
表示为
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_350.jpg?sign=1739125352-yfrI9LF680pFBx1ParmPAQw0gZYjWY5D-0-5bf5538d01011c6d20fdaa177663947e)
(5.103)
再利用特征向量之间的正交性可得
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_351.jpg?sign=1739125352-PZQGmPhWklLgKHF5hx2fYdMjlhA2ZBbw-0-59f613d860f45c3bf8f2f1adfac7653a)
(5.104)
【注记5.6】本章将矩阵的列空间称为信号子空间(
也称为信号子空间矩阵),将矩阵
的列空间称为噪声子空间(
也称为噪声子空间矩阵)。
5.3.2 一个重要的关系式
下面将推导一个重要的关系式,它对于确定辐射源位置至关重要。首先将式(5.99)代入式(5.104)中可得
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_356.jpg?sign=1739125352-j5hbqfD6TAfj5LjiT6dcdW4OgMfB7s0M-0-90f3527066cc847d3b993192d7cd69fa)
(5.105)
由式(5.105)可得
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_357.jpg?sign=1739125352-VCwBZCgaFc0xPQoclflGw3ZR2NFyoRas-0-ddbf0af5dc62e5b9f76bbb67c2dbf757)
(5.106)
接着将式(5.97)代入式(5.106)中可得
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_358.jpg?sign=1739125352-zmYC2UJcTet7MqC6H2oCpBCbxtJ4MteK-0-6de3b14a4cbab5c986a1e86fa437321d)
(5.107)
然后将式(5.5)和式(5.98)代入式(5.107)中,并且同时消除等式两边的虚数单位可得
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_360.jpg?sign=1739125352-bU2UMdeK4dJsayKbLH19Wa7A78xn9yKS-0-262d2aab28d5551ae1838098677f15b3)
(5.108)
式中
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_361.jpg?sign=1739125352-IWn8uhMgAsLHp8qXWxEFOLvlbQlmpEzi-0-9628640ff6b62da2953f8bda5e621b3a)
(5.109)
显然,向量中包含了辐射源位置坐标,一旦得到了向量
的估计值,就可以对辐射源进行定位。式(5.108)是关于向量
的子空间等式,但其中仅包含噪声子空间矩阵
。根据式(5.103)可知,标量积矩阵
是由信号子空间矩阵
表示的,因此下面还需要获得向量
与矩阵
之间的关系式,具体可见如下命题。
【命题5.3】假设是行满秩矩阵,则有
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_371.jpg?sign=1739125352-Nw3BHwFLxlRwtelOcxEa858k9hvqPxWu-0-fa58f692e232eb7c805923d23abdf3f7)
(5.110)
命题5.3的证明与命题5.1的证明类似,限于篇幅这里不再赘述。式(5.110)给出的关系式至关重要,但并不是最终的关系式。将式(5.110)两边左乘以可得
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_373.jpg?sign=1739125352-s55orOFQThBhTrr25bwkpcVtF22FZT6D-0-76855e311b621c44526bf662bdea0a63)
(5.111)
式中,第2个等号处的运算利用了式(5.103)。式(5.111)即为最终确定的关系式,它建立了关于向量的伪线性等式,其中一共包含
个等式,而TDOA观测量仅为
个,这意味着该关系式是存在冗余的。
5.3.3 定位原理与方法
下面将基于式(5.111)构建确定向量的估计准则,并给出其求解方法,然后由此获得辐射源位置向量
的估计值。为了简化数学表述,首先定义如下矩阵和向量:
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_379.jpg?sign=1739125352-r4ePfXktErqclCUyJVnse5Xm4udpetZ1-0-ecfec88adfc904761a3daa82ac3bae04)
(5.112)
结合式(5.111)和式(5.112)可得
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_380.jpg?sign=1739125352-aSazM8gitn1ntatJdFLPqwpRudOeFVWM-0-85aa84167eeb95274fa9805dd38f4f3e)
(5.113)
1.一阶误差扰动分析
在实际定位过程中,标量积矩阵和矩阵
的真实值都是未知的,因为其中的真实距离差
仅能用其观测值
来代替,这必然会引入观测误差。不妨将含有观测误差的标量积矩阵
记为
,于是根据式(5.100)和式(5.101)可知,矩阵
可以表示为
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_388.jpg?sign=1739125352-wMNftlIYcRNbZS4o5BqAPvEDMxVy9QN9-0-a9af75f89beec4efab7f8aca8b963d31)
(5.114)
不妨将含有观测误差的矩阵记为
,则根据式(5.109)和式(5.112)中的第1式可知
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_391.jpg?sign=1739125352-Bc97UYgix9AkkkAztu8yOOgtrWzVe1qI-0-07d04e54f94635d668ee455b500bfa40)
(5.115)
式中
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_392.jpg?sign=1739125352-gMh0PDQe7khHMBDMlB2vPh5zLVGwwsLb-0-77c8fa2f49bcfe16ef9fcc62dca92874)
(5.116)
由于,于是可以定义误差向量
,忽略误差二阶项可得
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_395.jpg?sign=1739125352-h19pkcHQteLjWhOrTgOgDHcNZCngmbII-0-9f94fe5e1cc16735e055e8ec7f125554)
(5.117)
式中,和
分别表示
和
中的误差矩阵,即有
和
。下面需要推导它们的一阶表达式(即忽略观测误差
的二阶及其以上各阶项),并由此获得误差向量
关于观测误差
的线性函数。
首先根据式(5.114)可以将误差矩阵近似表示为
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_407.jpg?sign=1739125352-NVScKdOj6NPawetgaQh0GhuXyozgFB0w-0-839946a6936d875cf31bc59c2c0fc95f)
(5.118)
利用式(5.118)可以将近似表示为关于观测误差
的线性函数,如下式所示:
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_410.jpg?sign=1739125352-JyjKAvJ8OJFT4f89w1XQrr35YdWncCfN-0-af74b640c19b2d2f04f92bb81893b8d0)
(5.119)
式中
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_411.jpg?sign=1739125352-TVdvptmSx3u26TSKrax1EM5ieRaVcdyT-0-ba3c398057b37522c52e590714d169f1)
(5.120)
其中
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_412.jpg?sign=1739125352-IeB7vaxtPqbxsu2KTfpd2auHJCR1LAid-0-6e440b49ca518d87be2396e0f29646fe)
(5.121)
式(5.119)的推导见附录B.4。接着利用式(5.115)和矩阵扰动理论(见2.3节)可以将误差矩阵近似表示为
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_414.jpg?sign=1739125352-FIiFUCfPKKUr2fg3khnOR8S39sLggK8s-0-2e8b81dde9a933d7ed0040289108e7e8)
(5.122)
式中
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_415.jpg?sign=1739125352-ssunLswFByIhxb2wrVvO9I2Qi1wqhG2J-0-bcd841dffe7d1e338c74ee95aba0d784)
(5.123)
结合式(5.122)和式(5.123),可以将近似表示为关于观测误差
的线性函数,如下式所示:
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_418.jpg?sign=1739125352-L4HLYbjNZzdm00uhWzaY4SF1DIz4Y5Xs-0-144f600d15dad7207a4b054cb272c4b6)
(5.124)
式中
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_419.jpg?sign=1739125352-5jv5mHMTLouid7j5iSdixuXljmXDu2SK-0-5c222c6ffeac245c54f8872f12198222)
(5.125)
其中
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_420.jpg?sign=1739125352-YwEhujzeNKe1BkpTlipIz8D7ToiVrqS8-0-f39c3125892560d70842815569a313bd)
(5.126)
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_421.jpg?sign=1739125352-8QptURleCk2EB8dbsDe6vH32XXDvk8E1-0-4739764fe874bcf04c458fa80c2b2d10)
(5.127)
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_422.jpg?sign=1739125352-sY0AqArotdbyCv6LbEE7YzGDeWRtDlhL-0-17dfa5da59cf90ef3c8c346d2e6363ee)
(5.128)
式中,。式(5.124)的推导见附录B.5。
将式(5.119)和式(5.124)代入式(5.117)中可得
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_424.jpg?sign=1739125352-CKkGnQrrp5SsAkdEXnGsv6MVmjVKB9Lh-0-bc2d7d33861c4c8a3c8b25fb4ec7dbb5)
(5.129)
式中,。由式(5.129)可知,误差向量
渐近服从零均值的高斯分布,并且其协方差矩阵为
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_427.jpg?sign=1739125352-v0ajGZ9GGbyJpDf4CjybZ7tEGmOQyFZZ-0-27680d92db371bc0fa294e8413ad2c73)
(5.130)
2.定位优化模型及其求解方法
一般而言,矩阵是列满秩的,即有
。由此可知,协方差矩阵
的秩也为
,但由于
是
阶方阵,这意味着它是秩亏损矩阵,所以无法直接利用该矩阵的逆构建估计准则。下面利用矩阵奇异值分解重新构造误差向量,以使其协方差矩阵具备满秩性。
首先对矩阵进行奇异值分解,如下式所示:
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_435.jpg?sign=1739125352-bVpDHwnTaHp7fNcrxLclcqNhVDhzO0V0-0-2f1843a42fb85c8623ff49faa3f62643)
(5.131)
式中,,为
阶正交矩阵;
为
阶正交矩阵;
为
阶对角矩阵,其中的对角元素为矩阵
的奇异值。为了得到协方差矩阵为满秩的误差向量,可以将矩阵
左乘以误差向量
,并结合式(5.117)和式(5.129)可得
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_445.jpg?sign=1739125352-XHQGAiMXQZ55fogxiUmD5vJDL0jip9kD-0-f89bfeec48b3b743c6dc9490ef0e6559)
(5.132)
由式(5.131)可得,将该式代入式(5.132)中可知,误差向量
的协方差矩阵为
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_448.jpg?sign=1739125352-qMxDb0KefacieuSPvp4hLB6SMYhpCqwZ-0-508edfb9c774f1ca5e3ca70f45811f82)
(5.133)
容易验证为满秩矩阵,并且误差向量
的维数为
,其与TDOA观测量个数相等,此时可以将估计向量
的优化准则表示为
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_453.jpg?sign=1739125352-QCS0iBCaJq4De1jXXLYu8mfcpgnZuAJA-0-5211cc8cda7f7f453e6037ef348eae22)
(5.134)
式中,可以看作加权矩阵,其作用在于抑制观测误差
的影响。不妨将矩阵
分块表示为
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_457.jpg?sign=1739125352-nW6Xtw3LkgXLJDvjW7YyNyZBINM162Aa-0-cd5e6460e13b6d60730f9057577a978c)
(5.135)
于是可以将式(5.134)重新写为
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_458.jpg?sign=1739125352-eVTHQn5BDMOMwqt6Lr7F02VzoWXw5u87-0-5ba35b8af724b26b66139f0b76bf6d3e)
(5.136)
再结合二次等式约束式(5.49)可以建立估计向量的优化模型,如下式所示:
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_460.jpg?sign=1739125352-ndULCpaprGFDXsUMvAsMnhRa75NJPFXl-0-814fd31d79afd7480cedd260bc1c0fc2)
(5.137)
显然,式(5.137)的求解方法与式(5.51)的求解方法完全相同,因此5.2.3节中描述的求解方法可以直接应用于此,限于篇幅这里不再赘述。类似地,将向量的估计值记为
,根据式(5.17)中的第2式可知,利用向量
中的前面3个分量就可以获得辐射源位置向量
的估计值
(即有
)。
【注记5.7】由式(5.130)、式(5.131)及式(5.133)可知,加权矩阵与未知向量
有关。因此,严格来说,式(5.137)中的目标函数并不是关于向量
的二次函数,针对该问题,可以采用注记4.1中描述的方法进行处理。理论分析表明,在一阶误差分析理论框架下,加权矩阵
中的扰动误差并不会实质影响估计值
的统计性能[10]。
图5.10给出了本章第2种加权多维标度定位方法的流程图。
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_474.jpg?sign=1739125352-dLFrIUxrTVPvLdOTRThcnHQkg7q9ObY0-0-4f7b199189c495aab64a370de9e18c57)
图5.10 本章第2种加权多维标度定位方法的流程图
5.3.4 理论性能分析
下面将给出估计值的理论性能。需要指出的是,5.2.4节中的性能推导方法可以直接搬移至此,所以这里仅直接给出最终结论。
首先可以获得估计值的均方误差矩阵,如下式所示:
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_477.jpg?sign=1739125352-Wk7DDsr6ZRgNrh8VX0EQL9LYL0mOgGII-0-49f91f69632c9f923e43645f0d906100)
(5.138)
与估计值类似,估计值
也具有渐近最优性,也就是其估计均方误差矩阵可以渐近逼近相应的克拉美罗界,具体可见如下命题。
【命题5.4】在一阶误差分析理论框架下,。
命题5.4的证明与命题5.2的证明类似,限于篇幅这里不再赘述。
5.3.5 仿真实验
假设利用6个传感器获得的TDOA信息(也即距离差信息)对辐射源进行定位,传感器三维位置坐标如表5.2所示,距离差观测误差向量服从均值为零、协方差矩阵为
的高斯分布。
表5.2 传感器三维位置坐标 (单位:m)
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_483.jpg?sign=1739125352-8BpU1vr5wlmWDLrObR7cT2qC5DfVgw2r-0-c3808cd3bd09a8495ce7feef5ad9c8e6)
首先将辐射源位置向量设为 (m),将标准差设为
,图5.11给出了定位结果散布图与定位误差椭圆曲线;图5.12给出了定位结果散布图与误差概率圆环曲线。
然后将辐射源坐标设为两种情形:第1种是近场源,其位置向量为(m);第2种是远场源,其位置向量为
(m)。改变标准差
的数值,图5.13给出了辐射源位置估计均方根误差随着标准差
的变化曲线;图5.14给出了辐射源定位成功概率随着标准差
的变化曲线(图中的理论值是根据式(3.29)和式(3.36)计算得出的,其中
m)。
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_494.jpg?sign=1739125352-WaPbf5HNd5PVrPhBzDeSSeajjCukipYF-0-0313de0e60265619b1aa24cbc086f8dd)
图5.11 定位结果散布图与定位误差椭圆曲线
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_495.jpg?sign=1739125352-JjMMlpojJShI0k02VhBAEKlfcoBhzzRt-0-aa78171dff74e3a12de07b81e3e01050)
图5.12 定位结果散布图与误差概率圆环曲线
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_496.jpg?sign=1739125352-fe3mMj0K7D9SMJKE65BfEcJaWLgnVVCE-0-c2144aeb988947a7bcc488fa6a5ce07f)
图5.13 辐射源位置估计均方根误差随着标准差σt的变化曲线
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_497.jpg?sign=1739125352-8DD1pCXAR6Tyexj6Fl5PW29T4JUibFGT-0-e23c4ab76f0c96bb164103728c3d7f8e)
图5.14 辐射源定位成功概率随着标准差σt的变化曲线
接着将标准差设为两种情形:第1种是
;第2种是
,将辐射源位置向量设为
(m)。改变参数
的数值,图5.15给出了辐射源位置估计均方根误差随着参数
的变化曲线;图5.16给出了辐射源定位成功概率随着参数
的变化曲线(图中的理论值是根据式(3.29)和式(3.36)计算得出的,其中
m)。
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_506.jpg?sign=1739125352-YASD1hrc0Y4Hdjkj8uqPJf4S7rh6Sz76-0-3635c829cbb8c9e40ccb26c75250e375)
图5.15 辐射源位置估计均方根误差随着参数k的变化曲线
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_507.jpg?sign=1739125352-apHQm8bl6q0pPlSnIBYfQjWmuGg49j92-0-37a6fd046bc67c4abca7bbd273ddf890)
图5.16 辐射源定位成功概率随着参数k的变化曲线
从图5.13~图5.16中可以看出:(1)基于加权多维标度的定位方法2的辐射源位置估计均方根误差同样可以达到克拉美罗界(见图5.13和图5.15),这验证了5.3.4节理论性能分析的有效性;(2)随着辐射源与传感器距离的增加,其定位精度会逐渐降低(见图5.15和图5.16),其对近场源的定位精度要高于对远场源的定位精度(见图5.13和图5.14);(3)两类定位成功概率的理论值和仿真值相互吻合,并且在相同条件下第2类定位成功概率高于第1类定位成功概率(见图5.14和图5.16),这验证了3.2节理论性能分析的有效性。
下面回到优化模型式(5.137)中,若不利用向量所满足的二次等式约束式(5.49),则其最优解具有闭式表达式,如下式所示:
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_509.jpg?sign=1739125352-pi2Vn77AWIN3ed4j6f5YR81dTeaTsxDN-0-131b062b43fc8a498048cc84d0433d8d)
(5.139)
仿照4.3.4节中的理论性能分析可知,该估计值是渐近无偏估计值,并且其均方误差矩阵为
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_510.jpg?sign=1739125352-oatjveqZa4IumF51QUZYL4Q1jgkLui5y-0-ec7b5f050b7368a7ed6ca8050b9dc3ae)
(5.140)
需要指出的是,若不利用向量所满足的二次等式约束,则可能会影响最终的定位精度。下面不妨比较“未利用二次等式约束(由式(5.139)给出的结果)”和“利用二次等式约束(由图5.10中的方法给出的结果)”这两种处理方式的定位精度。仿真参数基本同图5.15和图5.16,只是固定标准差
,改变参数
的数值,图5.17给出了辐射源位置估计均方根误差随着参数
的变化曲线;图5.18给出了辐射源定位成功概率随着参数
的变化曲线(图中的理论值是根据式(3.29)和式(3.36)计算得出的,其中
m)。
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_517.jpg?sign=1739125352-YuutkrQVzDtPyni3VJ97EVvmHn20DYpD-0-ac06a1c8b67d1c96e627855080009997)
图5.17 辐射源位置估计均方根误差随着参数k的变化曲线
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_518.jpg?sign=1739125352-AbmG0HMVOTpc8yg26FcY4pPiAV2rZlhV-0-a2c58a12c20db5bbb0fb6c46a5e12e65)
图5.18 辐射源定位成功概率随着参数k的变化曲线
从图5.17和图5.18中可以看出,若未利用向量所满足的二次等式约束,则最终的定位误差确实会有所增加。
[1]若信号传播速度已知,则距离差与到达时间差是可以相互转化的。
[2]这里使用下角标“tdoa”来表征所采用的定位观测量。
[3]本节中的数学符号大多使用上角标“(1)”,这是为了突出其对应于第1种定位方法。
[4]也不会实质影响估计值的统计性能。
[5]由式(5.17)中的第2式可知,向量中的第4个分量一定是负数。
[6]这里使用下角标“tdoa”来表征此克拉美罗界是基于TDOA观测量推导出来的。
[8]参数k越大,辐射源与传感器之间的距离越远。
[9]本节中的数学符号大多使用上角标“(2)”,这是为了突出其是对应于第2种定位方法。
[10]加权矩阵中的扰动误差也不会实质影响估计值
的统计性能。