数据产品经理:实战进阶
上QQ阅读APP看书,第一时间看更新

1.2.3 企业数据产品

1.什么是企业数据产品

企业数据产品,由企业自建自用,主要目的是降低员工使用数据的门槛,辅助人员作出决策和提高业务效率。根据内部定位,企业数据产品可再细分为应用型和平台型。应用型的企业数据产品专注于解决某个具体的业务问题或者部门问题,如客服数据监控系统和建立在集团平台的事业部决策分析系统;而平台型的目的就是为前者提供更好的支撑。

(1)企业数据产品之数据

数据界定了产品的性质和边界。企业数据产品关注核心在于降低数据使用门槛,利用数据优化业务,从而提高数据资产价值。因此,我们既需要关注数据在企业员工中的使用情况,改进体验不流畅的部分,也需要关注业务需求,为业务效率服务,最后还需要从数据资产本身出发,思考如何最大化发挥它的价值。

我们来看下转转公司利用企业数据产品提高业务效率的例子。企业内负责数据的部门往往会遇到很多提数需求。此类需求在数据部门看来价值不大,在业务部门看来需求紧迫但流程漫长,效率低下。一个需求提到数据部门后,要先经过需求评审,然后开发排期,最后到校验产出等若干个环节,业务部门可能会因此错过关键的运营时间点。基于此,转转数据中台设计了一个代号为“天枢”的数据产品,将针对用户UserID、Token、订单、商品等分析对象的常见属性和筛选条件组合起来,并横向整合了大数据、搜索、推荐、风控等部门的标签结果。同样的需求,业务方只需要在“天枢”上点点选选,就能完成数据提取和分析,原来需要耗时1~3天的工作,在“天枢”里几分钟内就能完成。“天枢”上线9个月,用户就自主完成超过13 000个分析任务,效率提升显著。在这个例子中,转转通过降低业务方使用数据的门槛,间接提高了他们的运营效率,同时使沉淀于企业内各部门的数据资产得到了更好的发挥和利用。

这里有一个小小的提醒是,数据产品不产生数据,只是数据的搬运工,要和非常底层的业务逻辑保持适当距离。对于日志打印、业务库设计等这些数据“原材料”,我们可以根据经验提出更优的方案,但不适合进行具体的落地和执行。很多数据产品经理在一些业务需求的实现过程中觉得比较低效和别扭,部分原因就是参与业务需求太深,导致在数据聚合层次掺杂了太多业务逻辑,不能实现数据层和业务层的有效隔离。

(2)企业数据产品之企业

面向企业内部的定位决定了此类需求具有受众集中、反馈回路短、用户体验要求低、需求繁杂琐碎、层级明显、看重数据安全6个特征。这些特征对数据产品经理来讲,有利有弊。

受众集中很好理解,本身就是面向企业内部的数据产品,相对于To B和To C类型的产品来讲自然用户比较集中。这里的集中有两个概念,一个是地理意义上的集中,一个是业务认知和群体素质的集中。使用者和设计者的沟通在这两个集中概念下变得相对高效。这也决定了后面两个特征:反馈回路短和用户体验要求低。

反馈回路短有需求反馈和价值反馈两个方面。用户数据产品和商用数据产品面向的都是外部的使用群体,其到数据产品经理的反馈回路较长,大部分需要用户调研、上门拜访、产品使用分析等比较间接的手段。而在企业内部,可能就是业务方走到你工位旁直接告诉你。这样的好处在于,能够更直接地了解业务方的需求和产品落地的价值,便于随时对产品进行调整;坏处在于很多时候短回路无法提供一个缓冲期,有很多临时变卦的可能性。因此我们需要扬长避短,把控好短回馈的节奏。

与用户数据产品和商用数据产品性质相同的是,企业数据产品也对用户体验要求较低。一方面因为受众集中,一些操作起来比较麻烦的产品,可以通过举办定期的培训和讲解来解决;另一方面,不存在类似To B和To C产品有竞争的问题,因此体验问题显得不那么重要。当然,即使优先级低,产品依旧需要着力降低数据的使用门槛,比如数据提取、指标分析、结果分享等过程。如果不重视数据方面的使用体验,比如业务方需要费很大劲才能弄清楚两个指标间的差别,甚至错误地使用指标,那么对于数据部门的声誉和数据价值都是很大的伤害。

需求繁杂琐碎,但其核心是需求控制和分级问题。各公司数据部门的定位不同,可能会有差异,但大部分情况下,基本所有数据相关的需求都会落在该部门头上,有些是临时探索,有些是长期分析。如果不先进行分门别类再进行排序筛选,数据产品就可能陷入数据泥沼里,脱不开身。需求的控制和分类,我们会在下面讲搭建企业数据平台型产品时介绍。

企业内用户层级明显,越到高层越能体现数据的价值。我们经常开玩笑说,老板的需求是最重要的。从数据这一方面来看,未必有错。因为“数据价值取决于数据使用者”,高层们看待数据的方式以及据此作出的决策,影响面往往更大,效果更明显。有层级的不仅是用户,更是数据发挥的价值。

最后,市场竞争激烈,数据安全及权限也是头等大事。但凡是企业内的数据中台,都躲不开权限设置的问题。常见的权限模型为RBAC(Role-Based Access Control,基于角色的访问控制)。它抽象出用户、角色、权限三个概念,通过角色控制菜单权限,再为用户赋予相应角色。角色一般根据业务部门和领导层级综合划定。这里需要多提一句的是,数据权限与安全和降低数据使用门槛是不冲突的,合适的划分是关键所在。同时,要尽量简化权限申请和审批流程,提高业务部门的使用效率。

(3)企业数据产品之产品

这里企业数据产品分为应用型和平台型两种。应用型的核心是业务敏感度,根据不同的业务需求设计对应的数据产品,如根据风控部门的需求来实时更新对应的风控标签和数据阈值,并且提供对应的监控和分析工具,完成从策略应用到分析落地的闭环。平台型强调的是面向各个业务提供服务,这要求产品具备较高的标准化和抽象化水平。标准化指的是主动出击,定下一些关键的数据资产规范,方便在企业中流通使用,如埋点管理、指标管理和数据库表管理等。抽象化指的是不能只关注于解决一两个具体的需求点,而是关注整个面的抽象和满足,是一个由点及面的过程

2.企业数据产品之平台型

(1)企业数据平台的目标

借用GrowingIO CEO Simon的理念,企业如同人类建立的水资源使用系统,而数据如水。企业数据平台的建设目标,应当是让数据像水资源一样在企业中流动,如图1-8展示的水循环系统一般。这意味着数据要像水一样做到干净无害、随用随取、场景丰富,而这恰好对应着数据准确、及时、易用、全面四个衡量维度。

图1-8 数据像水资源一样流动

进入人类资源使用系统的水资源需要经过一定的清洗和沉淀,确保“干净无害”,然后根据不同的水用途存储,进入不同的管道,这对应着数据的“准确”。而这里的“随用随取”指在人类社会中,拧开水龙头就能出水,对应着数据的“及时”与“易用”。“场景丰富”则意味着在不同场景里,水会有不同用途,饮用水、清洁用水、灌溉用水各取所需,单单饮用水就又分城市用水、矿泉水、纯净水等不同使用方式,这对应着通过挖掘和丰富数据的使用场景,深化数据本身“全面”的含义。

达成这个目标的企业数据平台,便能通过丰富场景、赋能业务来提升整个企业使用数据的意愿和效率,赋予业务方高效使用和挖掘数据的能力。企业数据平台的主要使用场景如下:辅助企业决策(如市场动向、用户分析和财务分析等)、建立数据流程、优化用户体验、挖掘数据资产等。

建立数据流程,从产品上,是帮助业务方更好地完成使用数据的流程,包括采集存储、展示分析到最后的挖掘落地三个层次;从需求上,即建立一个比较完善的需求分流解决机制,将零散需求、常规需求、业务需求等分类处理完毕,并能将进展和结果及时反馈给需求方。优化用户体验是通过掌握用户数据为用户提供更加顺畅的使用体验、更加精准的营销等。挖掘数据资产包括标准化数据资产,以及不断挖掘回馈原有数据,丰富已有数据维度。

(2)如何搭建企业数据平台

一个完善的企业数据平台应该由技术框架、数据框架和产品框架三部分组成,如图1-9所示。技术框架非本书重点,此处暂不介绍。数据框架主要有数据模型、安全及质量这三个模块。其中,数据模型负责根据业务抽象出对应的领域模型,如电商、社交、游戏等,然后确定对应的主题域划分和维度模型。产品框架上,遵循What-Why-How的划分方式。首先解决采集存储,即“是什么”(What)的问题,将数据采集后清洗存储下来;其次解决“为什么”(Why)的问题,利用分析架构和数据可视化展示,帮助用户寻找原因;最后解决“怎么做”(How)的问题,通过价值的深入挖掘、与业务紧密结合等方式,来确定具体的内容和方向。

图1-9 企业数据平台之产品框架

对于具体的需求,我们根据其层次不同,通过三种递进的方案来满足。

·自定义分析。基本不需要数据和分析部门介入,提供工具就能满足业务需求。面对这种需求,基本有三个解决方案:一是采用开源方案HUE搭建的SQL查询功能,解决非常零碎且无法产品化的临时需求;二是基于埋点的自动分析功能,只要按照数据规范进行的埋点,都可以在页面查询并分析数据;三是采用自定义报表分析界面,支持业务方导入数据表后进行可视化展示。这三种方案解决三种不同层次的需求,可以帮助节省大量人力。

·事件分析。需要数据部门进行一定程度的抽象,常见的就是留存/漏斗分析。这类需求的典型特征是寻求事件之间的留存转化规律,抽象后可以落地成对应的数据工具。这些工具有一定的培训成本,适用特定场景。

·多维交叉分析。需要数据部门根据业务进行规划和设计对应的分析体系,包含合理的维度和指标。一般来说,这会是一个部门的基准需求,使用频次高,用于每天监控及分析业务异常原因。

3.企业数据产品之应用型

企业数据应用,更多是结合业务场景设计对应的工具来提高效率。本书的姊妹篇《数据产品经理:解决方案与案例分析》(暂名)一书中有很多大数据和各行业结合的案例,这些案例本质上就是企业数据应用的一种形态。企业数据应用按内容可分为数据策略、数据化运营、智能分析等若干个方向。

我们以智能分析中的一个场景为例。背景是当某一时刻发生数据异常时,业务方希望能够第一时间发现这个异常,并定位背后的原因,进而提高决策效率。目前市面上的常见方案是先通过时间序列预测算法(Hot-Winters)根据过往历史数据,产出对下一时刻数据的预测值,然后与现实值对比,如图1-10所示。一般来讲,这种差值会形成一个类正态分布,当差值落在两个标准差之外的范围时,我们就认为当前数据异常,触发报警。同时,我们根据异常维度分析算法(常见的有基尼系数和决策树等),将该异常进行维度和组合拆解,定位原因所在。这样一来,整个异常的发现和分析过程就变得十分高效。

4.小结

上面提到的很多模块,这里只是一笔带过,留待后面章节详细介绍。综上,企业数据产品在设计和开发上有很多独有的特点。首先,企业数据产品承接了来源众多的业务需求,在抽象和管理上难度较大,很容易产生冗余浪费,历史依赖混杂不清,整个BI平台变成数据的垃圾场、泥沼地。其次,数据开发工作长期来看是个细活、脏活、累活,要想长期保证数据安全、质量和规范,需要设计各种机制进行监测,并不断优化。最后,在发挥企业数据资产价值的路上,我们还需要不断丰富场景,设计与开发符合业务场景的数据产品。尽管如此,作为企业管理和挖掘数据资产的抓手,企业数据产品在未来企业竞争中依然显得无比重要。

图1-10 企业数据应用之智能分析