最简数据挖掘
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

练 习 赛

运用本章所学知识,尝试完成如下竞赛题目。

2-1 借贷风险预测:预测银行用户的信用好坏。

2-2 客户流失判断:判断客户是否会流失。

2-3 商品推荐:预测电商中用户对于商品的评分。

竞赛页面
(竞赛题目可能会不定时更新)

  • [6] S. Lloyd. Least squares quantization in PCM.IEEE Transactions on Information Theory, 28, 1982: 129-137(原文 1957 年在 Bell 实验室内部发表).
  • [7] E. W. Forgy.Cluster analysis of multivariate data: Efficiency versus interpretability of classifications.Biometrics, 21, 1965: 768-769.
  • [8] J. Han, M. Kamber, J. Pei.数据挖掘:概念与技术.范明,孟小峰译.机械工业出 版社,2016.
  • [9] X. Wu, V. Kumar.数据挖掘十大算法.李文波,吴素研译.清华大学出版社,2013.
  • [10] L. van der Maaten, G. Hinton.Visualizing data using t-SNE.Journal of Machine Learning Research, 9, 2008: 2579-2605.
  • [11] L. van der Maaten.Accelerating t-SNE using tree-based algorithms.Journal of Machine Learning Research, 15, 2014: 3221-3245.
  • [12] M. E. Celebi, H. A. Kingravi, P. A. Vela.A comparative study of efficient initialization methods for the k-means clustering algorithm.Expert Systems with Applications, 40, 2013: 200-210.
  • [13] D. Arthur, S. Vassilvitskii.How slow is the k-means method.Proceedings of the 22nd Annual Symposium on Computational Geometry (ACM Press), 2006, p. 144-153.
  • [14] R. M. Gray, D. L. Neuhoff.Quantization.IEEE Transactions on Information Theory, 44, 1998: 2325-2384.
  • [15] T. Kanungo, et al. . A local search approximation algorithm for k-meansclustering.Computational Geometry: Theory and Applications, 28, 2004: 89-112.
  • [16] A. K. Jain.Data Clustering: 50 years beyond k-means.Pattern Recognition Letters, 31, 2010: 651-666.