参考文献
[1]?turcová A, Davies G R, Eichhorn S J. Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules, 2005, 6(2): 1055-1061.
[2]Zhang X, Huang J, Chang P R, Li J, Chen Y, Wang D, Chen J. Structure and properties of polysaccharide nanocrystal-doped supramolecular hydrogels based on cyclodextrin inclusion. Polymer, 2010, 51(19): 4398-4407.
[3]Roman M, Winter W T. Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules, 2004, 5(5): 1671-1677.
[4]Winter H T, Cerclier C, Delorme N, Bizot H, Quemener B, Cathala B. Improved colloidal stability of bacterial cellulose nanocrystal suspensions for the elaboration of spin-coated cellulose-based model surfaces. Biomacromolecules, 2010, 11(11): 3144-3151.
[5]Wang N, Ding E, Cheng R. Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups.Polymer, 2007, 48(12): 3486-3493.
[6]Braun B, Dorgan J R. Single-step method for the isolation and surface functionalization of cellulosic nanowhiskers.Biomacromolecules, 2008, 10(2): 334-341.
[7]Fan Y, Saito T, Isogai A. Chitin nanocrystals prepared by TEMPO-mediated oxidation of α-chitin.Biomacromolecules, 2007, 9(1): 192-198.
[8]R?nby B G. Fibrous macromolecular systems. Cellulose and muscle. The colloidal properties of cellulose micelles.Discuss. Faraday Soc., 1951, 11: 158-164.
[9]Habibi Y, Lucia L A, Rojas O J. Cellulose nanocrystals: chemistry, self-assembly, and applications.Chem. Rev., 2010, 110(6): 3479-3500.
[10]Angles M N, Dufresne A. Plasticized/Tunicin Whiskers Nanocomposites Materials. 2. Mechanical Behaviour. Macromolecules, 2001, 34(9): 2921-2931.
[11]Grunert M, Winter W T. Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals.J. Polym. Environ., 2002, 10(1-2): 27-30.
[12]Lin N, Yu J, Chang P R, Li J, Huang J. Poly (butylene succinate)-based biocomposites filled with polysaccharide nanocrystals: Structure and properties. Polym. Compos., 2011, 32(3): 472-482.
[13]Dong X M, Kimura T, Revol J F, Gray D G. Effects of ionic strength on the isotropic-chiral nematic phase transition of suspensions of cellulose crystallites.Langmuir, 1996, 12(8): 2076-2082.
[14]Siqueira G, Bras J, Dufresne A. Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites.Biomacromolecules, 2008, 10(2): 425-432.
[15]Junior de Menezes A, Siqueira G, Curvelo A A, Dufresne A. Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites.Polymer, 2009, 50(19): 4552-4563.
[16]Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J L, Heux L, Dubreuil F, Rochas C. The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose.Biomacromolecules, 2007, 9(1): 57-65.
[17]Angles M N, Dufresne A. Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis.Macromolecules, 2000, 33(22): 8344-8353.
[18]Urena-Benavides E E, Brown P J, Kitchens C L. Effect of Jet Stretch and Particle Load on Cellulose Nanocrystal- Alginate Nanocomposite Fibers.Langmuir, 2010, 26(17): 14263-14270.
[19]Pakzad A, Simonsen J,Yassar R S. Gradient of nanomechanical properties in the interphase of cellulose nanocrystal composites.Compos. Sci. Technol., 2012, 72(2): 314-319.
[20]Edwards J V, Prevost N T, Condon B, French A, Wu Q. Immobilization of lysozyme-cellulose amide-linked conjugates on cellulose I and II cotton nanocrystalline preparations.Cellulose, 2012, 19(2): 495-506.
[21]Lu P, Hsieh Y L. Preparation and properties of cellulose nanocrystals: Rods, spheres, and network.Carbohydr. Polym., 2010, 82(2): 329-336.
[22]Lin N, Huang J, Chang P R, Feng J, Yu J. Surface acetylation of cellulose nanocrystal and its reinforcing function in poly (lactic acid).Carbohydr. Polym., 2011, 83(4): 1834-1842.
[23]Espino-Pérez E, Bras J, Ducruet V, Guinault A, Dufresne A, Domenek S. Influence of chemical surface modification of cellulose nanowhiskers on thermal, mechanical, and barrier properties of poly (lactide) based bionanocomposites.Eur. Polym. J., 2013, 49(10): 3144-3154.
[24]Roohani M, Habibi Y, Belgacem N M, Ebrahim G, Karimi A N, Dufresne A. Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites.Eur. Polym. J., 2008, 44(8): 2489-2498.
[25]Cranston E D, Gray D G. Morphological and optical characterization of polyelectrolyte multilayers incorporating nanocrystalline cellulose.Biomacromolecules, 2006, 7(9): 2522-2530.
[26]Lu Z, Fan L, Zheng H, Lu Q, Liao Y, Huang B. Preparation, characterization and optimization of nanocellulose whiskers by simultaneously ultrasonic wave and microwave assisted.Bioresource technol., 2013, 146: 82-88.
[27]Tang L, Huang B, Lu Q, Wang S, Ou W, Lin W, Chen X. Ultrasonication-assisted manufacture of cellulose nanocrystals esterified with acetic acid.Bioresource technol., 2013, 127: 100-105.
[28]Tang L R, Huang B, Ou W, Chen X R, Chen Y D. Manufacture of cellulose nanocrystals by cation exchange resin-catalyzed hydrolysis of cellulose.Bioresource technol., 2011, 102(23): 10973-10977.
[29]Dong X M, Revol J F, Gray D G. Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose.Cellulose, 1998, 5(1): 19-32.
[30]Rusli R, Shanmuganathan K, Rowan S J, Weder C, Eichhorn S J. Stress Transfer in Cellulose Nanowhisker Composites Influence of Whisker Aspect Ratio and Surface Charge. Biomacromolecules, 2011, 12(4): 1363-1369.
[31]Salajková M, Berglund L A, Zhou Q. Hydrophobic cellulose nanocrystals modified with quaternary ammonium salts.J. Mater. Chem., 2012, 22(37): 19798-19805.
[32]Yu H, Qin Z, Liang B, Liu N, Zhou Z, Chen L. Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions.J. Mater. Chem. A, 2013, 1(12): 3938-3944.
[33]Araki J, Wada M, Kuga S, Okano T. Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose.Colloid Surfaces A, 1998, 142(1): 75-82.
[34]Sadeghifar H, Filpponen I, Clarke S P, Brougham D F, Argyropoulos D S. Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface.J. Mater Sci., 2011, 46(22): 7344-7355.
[35]Camarero Espinosa S, Kuhnt T, Foster E J, Weder C. Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis.Biomacromolecules, 2013, 14(4): 1223-1230.
[36]Anastas P T, Warner J C.Green chemistry: theory and practice. Oxford University Press, 2000.
[37]Esteghlalian A R, Bilodeau M, Mansfield S D, Saddler J N. Do enzymatic hydrolyzability and Simons' stain reflect the changes in the accessibility of lignocellulosic substrates to cellulase enzymes?.Biotechnol. progr., 2001, 17(6): 1049-1054.
[38]Yang D, Peng X W, Zhong L X, Cao X F, Chen W, Sun R C. Effects of pretreatments on crystalline properties and morphology of cellulose nanocrystals.Cellulose, 2013, 20(5): 2427-2437.
[39]Ago M, Endo T, Hirotsu T. Crystalline transformation of native cellulose from cellulose I to cellulose ID polymorph by a ball-milling method with a specific amount of water.Cellulose, 2004, 11(2): 163-167.
[40]Gao Q, Shen X, Lu X. Regenerated bacterial cellulose fibers prepared by the NMMO/H2O process. Carbohydr. Polym., 2011, 83(3): 1253-1256.
[41]Zhang H, Wu J, Zhang J, He J. 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose.Macromolecules, 2005, 38(20): 8272-8277.
[42]Bai W, Holbery J, Li K. A technique for production of nanocrystalline cellulose with a narrow size distribution.Cellulose, 2009, 16(3): 455-465.
[43]de Souza Lima M M, Borsali R. Static and dynamic light scattering from polyelectrolyte microcrystal cellulose.Langmuir, 2002, 18(4): 992-996.
[44]Gu J, Catchmark J M, Kaiser E Q, Archibald D D. Quantification of cellulose nanowhiskers sulfate esterification levels.Carbohydr. polym., 2013, 92(2): 1809-1816.
[45]Araki J, Wada M,Kuga S. Steric stabilization of a cellulose microcrystal suspension by poly (ethylene glycol) grafting.Langmuir, 2001, 17(1): 21-27.
[46]Heux L, Chauve G, Bonini C. Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents.Langmuir, 2000, 16(21): 8210-8212.
[47]de Souza Lima M M, Wong J T, Paillet M, Borsali R, Pecora R. Translational and rotational dynamics of rodlike cellulose whiskers.Langmuir, 2003, 19(1): 24-29.
[48]Miller A F, Donald A M. Imaging of anisotropic cellulose suspensions using environmental scanning electron microscopy.Biomacromolecules, 2003, 4(3): 510-517.
[49]Morais J P S, Rosa M D F, Nascimento L D, do Nascimento D M, Cassales A R. Extraction and characterization of nanocellulose structures from raw cotton linter.Carbohydr. polym., 2013, 91(1): 229-235.
[50]Li Q, Zhou J, Zhang L. Structure and properties of the nanocomposite films of chitosan reinforced with cellulose whiskers.J. Polym. Sci. Part B: Polym. Phys., 2009, 47(11): 1069-1077.
[51]Bondeson D, Mathew A, Oksman K. Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis.Cellulose, 2006, 13(2): 171-180.
[52]Capadona J R, Shanmuganathan K, Trittschuh S, Seidel S, Rowan S J, Weder C. Polymer nanocomposites with nanowhiskers isolated from microcrystalline cellulose.Biomacromolecules, 2009, 10(4): 712-716.
[53]Pranger L, Tannenbaum R. Biobased nanocomposites prepared by in situ polymerization of furfuryl alcohol with cellulose whiskers or montmorillonite clay.Macromolecules, 2008, 41(22): 8682-8687.
[54]Habibi Y, Hoeger I, Kelley S S, Rojas O J. Development of Langmuir Schaeffer Cellulose Nanocrystal Monolayers and Their Interfacial Behaviors.Langmuir, 2009, 26(2): 990-1001.
[55]Habibi Y, Goffin A L, Schiltz N, Duquesne E, Dubois P, Dufresne A. Bionanocomposites based on poly (ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization.J. Mater. Chem., 2008, 18(41): 5002-5010.
[56]De Rodriguez N L G, Thielemans W, Dufresne A. Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites.Cellulose, 2006, 13(3): 261-270.
[57]Kargarzadeh H, Ahmad I, Abdullah I, Dufresne A, Zainudin S Y, Sheltami R M. Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers.Cellulose, 2012, 19(3): 855-866.
[58]Araki J, Wada M, Kuga S, Okano T. Influence of surface charge on viscosity behavior of cellulose microcrystal suspension.J. Wood Sci., 1999, 45(3): 258-261.
[59]Beck-Candanedo S, Roman M, Gray D G. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions.Biomacromolecules, 2005, 6(2): 1048-1054.
[60]Terech P, Chazeau L, Cavaille J Y. A small-angle scattering study of cellulose whiskers in aqueous suspensions.Macromolecules, 1999, 32(6): 1872-1875.
[61]Lin N, Huang J, Dufresne A. Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale, 2012, 4(11): 3274-3294.
[62]Araki J, Kuga S. Effect of trace electrolyte on liquid crystal type of cellulose microcrystals. Langmuir, 2001, 17(15): 4493-4496.
[63]Meyer K H, Lotmar W. On the elasticity of the cellulose. (On the constitution of partially crystallized cellulose IV). Helv. Chim. Acta, 1936, 19(1): 68-86.
[64]Sakurada I, Nukushina Y, Ito T. Experimental determination of the elastic modulus of crystalline regions in oriented polymers.J. Polym. Sci., 1962, 57(165): 651-660.
[65]Sakurada I, Ito T, Nakamae K. Elastic moduli of polymer crystals for the chain axial direction. Makromol. Chem., 1964, 75(1): 1-10.
[66]Jaswon M A, Gillis P P, Mark R E. The elastic constants of crystalline native cellulose.Proc.R. Soc. London, Ser. A, 1968, 306(1486): 389-412.
[67]Tashiro K, Kobayashi M. Calculation of crystallite modulus of native cellulose.Polym. Bull., 1985, 14(3-4): 213-218.
[68]Kroon-Batenburg L M J, Kroon J, Northolt M G. Chain modulus and intramolecular hydrogen bonding in native and regenerated cellulose fibers.Polym. Commun., 1986, 27(10): 290-292.
[69]Matsuo M, Sawatari C, Iwai Y, Ozaki F. Effect of orientation distribution and crystallinity on the measurement by X-ray diffraction of the crystal lattice moduli of cellulose I and II.Macromolecules, 1990, 23(13): 3266-3275.
[70]Tashiro K, Kobayashi M. Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds.Polymer, 1991, 32(8): 1516-1526.
[71]Nishino T, Takano K, Nakamae K. Elastic modulus of the crystalline regions of cellulose polymorphs.J. Polym. Sci. Part B: Polym. Phys., 1995, 33(11): 1647-1651.
[72]Guhados G, Wan W, Hutter J L. Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy.Langmuir, 2005, 21(14): 6642-6646.
[73]Tanaka F, Iwata T. Estimation of the elastic modulus of cellulose crystal by molecular mechanics simulation.Cellulose, 2006, 13(5): 509-517.
[74]Cheng Q, Wang S. A method for testing the elastic modulus of single cellulose fibrils via atomic force microscopy.Compos. Part A: Appl. S. 2008, 39(12): 1838-1843.
[75]Iwamoto S, Kai W, Isogai A, Iwata T. Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy.Biomacromolecules, 2009, 10(9): 2571-2576.
[76]Ishikawa A, Okano T, Sugiyama J.Fine structure and tensile properties of ramie fibres in the crystalline form of cellulose I, II, IIII and IVI. Polymer, 1997, 38(2): 463-468.
[77]Diddens I, Murphy B, Krisch M, Mü ller M. Anisotropic elastic properties of cellulose measured using inelastic X-ray scattering. Macromolecules, 2008, 41(24): 9755-9759.
[78]Rusli R, Eichhorn S J. Determination of the stiffness of cellulose nanowhiskers and the fiber-matrix interface in a nanocomposite using Raman spectroscopy.Appl. Phys. Lett., 2008, 93(3): 033111.
[79]Lahiji R R, Xu X, Reifenberger R, Raman A, Rudie A, Moon R J. Atomic force microscopy characterization of cellulose nanocrystals.Langmuir, 2010, 26(6): 4480-4488.
[80]Pakzad A, Simonsen J, Heiden P A, Yassar R S. Size effects on the nanomechanical properties of cellulose I nanocrystals.J. Mater. Res., 2012, 27(03): 528-536.
[81]Wagner R, Moon R, Pratt J, Shaw G, Raman A. Uncertainty quantification in nanomechanical measurements using the atomic force microscope.Nanotechnology, 2011, 22(45): 455703.
[82]Wada M, Heux L, Sugiyama J. Polymorphism of cellulose I family: reinvestigation of cellulose IVI.Biomacromolecules, 2004, 5(4): 1385-1391.
[83]Chen D, Lawton D, Thompson M R, Liu Q. Biocomposites reinforced with cellulose nanocrystals derived from potato peel waste.Carbohydr. Polym., 2012, 90(1): 709-716.
[84]Wada M, Kondo T, Okano T. Thermally induced crystal transformation from cellulose Iα to Iβ.Polym. j., 2003, 35(2): 155-159.
[85]Nishiyama Y, Sugiyama J, Chanzy H, Langan P. Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction.J. Am. Chem. Soc., 2003, 125(47): 14300-14306.
[86]Khoshkava V, Kamal M R. Effect of Surface Energy on Dispersion and Mechanical Properties of Polymer/Nanocrystalline Cellulose Nanocomposites.Biomacromolecules, 2013, 14(9): 3155-3163.
[87]Dankovich T A, Gray D G. Contact angle measurements on smooth nanocrystalline cellulose (I) thin films.J. Adhes. Sci. Technol., 2011, 25(6-7): 699-708.
[88]Shang W, Huang J, Luo H, Chang P R, Feng J, Xie G. Hydrophobic modification of cellulose nanocrystal via covalently grafting of castor oil.Cellulose, 2013, 20(1): 179-190.
[89]Yu H Y, Qin Z Y. Surface grafting of cellulose nanocrystals with poly (3-hydroxybutyrate-co-3-hydroxyvalerate).Carbohydr. polym., 2014, 101: 471-478.
[90]Morandi G, Heath L, Thielemans W. Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerization (SI-ATRP).Langmuir, 2009, 25(14): 8280-8286.
[91]Glasser W G, Taib R, Jain R K, Kander R. Fiber-reinforced cellulosic thermoplastic composites. J. Appl. Polym. Sci., 1999, 73(7): 1329-1340.
[92]Bondeson D, Oksman K. Dispersion and characteristics of surfactant modified cellulose whiskers nanocomposites.Compo. Interface, 2007, 14(7-9): 617-630.
[93]Ben Azouz K, Ramires E C, Van den Fonteyne W, El Kissi N, Dufresne A. Simple method for the melt extrusion of a cellulose nanocrystal reinforced hydrophobic polymer.ACS Macro Lett., 2011, 1(1): 236-240.
[94]Lin N, Dufresne A. Physical and/or chemical compatibilization of extruded cellulose nanocrystal reinforced polystyrene nanocomposites.Macromolecules, 2013, 46(14): 5570-5583.
[95]Beck S, Bouchard J, Chauve G, Berry R. Controlled production of patterns in iridescent solid films of cellulose nanocrystals.Cellulose, 2013, 20(3): 1401-1411.
[96]Liu D, Chen X, Yue Y, Chen M, Wu Q. Structure and rheology of nanocrystalline cellulose.Carbohydr. Polym., 2011, 84(1): 316-322.
[97]Majoinen J, Kontturi E, Ikkala O, Gray D G. SEM imaging of chiral nematic films cast from cellulose nanocrystal suspensions. Cellulose, 2012, 19(5): 1599-1605.
[98]Roman M, Gray D G. Parabolic focal conics in self-assembled solid films of cellulose nanocrystals.Langmuir, 2005, 21(12): 5555-5561.
[99]Revol J F, Bradford H, Giasson J, Marchessault R H, Gray D G. Helicoidal self-ordering of cellulose microfibrils in aqueous suspension.Int. J. Biol. Macromole., 1992, 14(3): 170-172.
[100]Hirai A, Inui O, Horii F, Tsuji M. Phase separation behavior in aqueous suspensions of bacterial cellulose nanocrystals prepared by sulfuric acid treatment.Langmuir, 2008, 25(1): 497-502.
[101]Picard G, Simon D, Kadiri Y, LeBreux J D, Ghozayel F. Cellulose nanocrystal iridescence: a new model.Langmuir, 2012, 28(41): 14799-14807.
[102]de Souza Lima M M, Borsali R. Rodlike cellulose microcrystals: structure, properties, and applications.Macromol. Rapid Commun., 2004, 25(7): 771-787.
[103]Elazzouzi-Hafraoui S, Putaux J L, Heux L. Self-assembling and chiral nematic properties of organophilic cellulose nanocrystals. J. Phys. Chem. B, 2009, 113(32): 11069-11075.
[104]Sassi J F, Chanzy H. Ultrastructural aspects of the acetylation of cellulose.Cellulose, 1995, 2(2): 111-127.
[105]Montanari S, Roumani M, Heux L, Vignon M R. Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation.Macromolecules, 2005, 38(5): 1665-1671.
[106]Goussé C, Chanzy H, Excoffier G, Soubeyrand L, Fleury E. Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents.Polymer, 2002, 43(9): 2645-2651.
[107]de Oliveira Taipina M, Ferrarezi M M F, Yoshida I V P, do Carmo Gon?alves M. Surface modification of cotton nanocrystals with a silane agent.Cellulose, 2013, 20(1): 217-226.
[108]Zhao B, Brittain W J. Polymer brushes: surface-immobilized macromolecules.Prog. Polym Sci., 2000, 25(5): 677-710.
[109]Ljungberg N, Bonini C, Bortolussi F, Boisson C, Heux L, Cavaillé J Y. New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics.Biomacromolecules, 2005, 6(5): 2732-2739.
[110]Habibi Y, Chanzy H, Vignon M R. TEMPO-mediated surface oxidation of cellulose whiskers.Cellulose, 2006, 13(6): 679-687.
[111]Urena-Benavides E E, Ao G, Davis V A, Kitchens C L. Rheology and phase behavior of lyotropic cellulose nanocrystal suspensions.Macromolecules, 2011, 44(22): 8990-8998.
[112]Bercea M, Navard P. Shear dynamics of aqueous suspensions of cellulose whiskers.Macromolecules, 2000, 33(16): 6011-6016.
[113]Dorris A, Gray D G. Gelation of cellulose nanocrystal suspensions in glycerol.Cellulose, 2012, 19(3): 687-694.
[114]Morganti P, Muzzarelli R A, Muzzarelli C. Multifunctional use of innovative chitin nanofibrils for skin care.J. Appl. Cosmetol, 2006, 24: 105-114.
[115]Revol J F, Marchessault R H. In vitro chiral nematic ordering of chitin crystallites.Int. J. Biol. Macromol., 1993, 15(6): 329-335.
[116]Paillet M, Dufresne A. Chitin whisker reinforced thermoplastic nanocomposites.Macromolecules, 2001, 34(19): 6527-6530.
[117]Lu Y, Weng L, Zhang L. Morphology and properties of soy protein isolate thermoplastics reinforced with chitin whiskers.Biomacromolecules, 2004, 5(3): 1046-1051.
[118]Gopalan Nair K, Dufresne A. Crab shell chitin whisker reinforced natural rubber nanocomposites. 1. Processing and swelling behavior.Biomacromolecules, 2003, 4(3): 657-665.
[119]Goodrich J D, Winter W T. α-chitin nanocrystals prepared from shrimp shells and their specific surface area measurement.Biomacromolecules, 2007, 8(1): 252-257.
[120]Watthanaphanit A, Supaphol P, Tamura H, Tokura S, Rujiravanit R. Fabrication, structure, and properties of chitin whisker-reinforced alginate nanocomposite fibers. J. Appl. Polym. Sci., 2008, 110(2): 890-899.
[121]Wongpanit P, Sanchavanakit N, Pavasant P, Bunaprasert T, Tabata Y, Rujiravanit R. Preparation and characterization of chitin whisker-reinforced silk fibroin nanocomposite sponges.Eur. Polym. J., 2007, 43(10): 4123-4135.
[122]Rudall K M, Kenchington W. The chitin system.Biological Reviews, 1973, 48(4): 597-633.
[123]Paralikar K M, Balasubramanya R H. Electron diffraction study of α-chitin. J. Polym. Sci., 1984, 22(10): 543-546.
[124]Atkins E. Conformations in polysaccharides and complex carbohydrates.J. Biosciences, 1985, 8(1-2): 375-387.
[125]Rinaudo M. Chitin and chitosan: properties and applications.Prog. Polym. Sci., 2006, 31(7): 603-632.
[126]Yamamoto Y, Nishimura T, Saito T, Kato T. CaCO3/chitin-whisker hybrids: formation of CaCO3 crystals in chitin-based liquid-crystalline suspension. Polym. J., 2010, 42(7): 583-586.
[127]Fan Y, Saito T, Isogai A. Individual chitin nano-whiskers prepared from partially deacetylated α-chitin by fibril surface cationization.Carbohydr. Polym., 2010, 79(4): 1046-1051.
[128]Junkasem J, Rujiravanit R, Supaphol P. Fabrication of α-chitin whisker-reinforced poly (vinyl alcohol) nanocomposite nanofibres by electrospinning.Nanotechnology, 2006, 17(17): 4519.
[129]Morin A, Dufresne A. Nanocomposites of chitin whiskers from Riftia tubes and poly (caprolactone).Macromolecules, 2002, 35(6): 2190-2199.
[130]Nge T T, Hori N, Takemura A, Ono H, Kimura T. Phase behavior of liquid crystalline chitin/acrylic acid liquid mixture.Langmuir, 2003, 19(4): 1390-1395.
[131]Tzoumaki M V, Moschakis T, Biliaderis C G. Metastability of nematic gels made of aqueous chitin nanocrystal dispersions.Biomacromolecules, 2009, 11(1): 175-181.
[132]Belamie E, Davidson P, Giraud-Guille M M. Structure and chirality of the nematic phase in -chitin suspensions.J. Phys. Chem. B, 2004, 108(39): 14991-15000.
[133]LeCorre D, Bras J, Dufresne A. Evidence of micro-and nanoscaled particles during starch nanocrystals preparation and their isolation.Biomacromolecules, 2011, 12(8): 3039-3046.
[134]Angellier H, Choisnard L, Molina-Boisseau S, Ozil P, Dufresne A. Optimization of the preparation of aqueous suspensions of waxy maize starch nanocrystals using a response surface methodology.Biomacromolecules, 2004, 5(4): 1545-1551.
[135]Angellier H, Putaux J L, Molina-Boisseau S, Dupeyre D, Dufresne A. Starch nanocrystal fillers in an acrylic polymer matrix. Macromol. Symp. 2005, 221(1):95-104.
[136]Putaux J L, Molina-Boisseau S, Momaur T, Dufresne A. Platelet nanocrystals resulting from the disruption of waxy maize starch granules by acid hydrolysis.Biomacromolecules, 2003, 4(5): 1198-1202.
[137]Kim H Y, Park D J, Kim J Y, Lim S T. Preparation of crystalline starch nanoparticles using cold acid hydrolysis and ultrasonication.Carbohydr. polym., 2013, 98(1): 295-301.
[138]Angellier H, Molina-Boisseau S, Lebrun L, Dufresne A. Processing and structural properties of waxy maize starch nanocrystals reinforced natural rubber.Macromolecules, 2005, 38(9): 3783-3792.
[139]Dufresne A. Polysaccharide nano crystal reinforced nanocomposites.Can. J. Chem., 2008, 86(6): 484-494.
[140]Kim H Y, Han J A, Kweon D K, Park J D, Lim S T. Effect of ultrasonic treatments on nanoparticle preparation of acid-hydrolyzed waxy maize starch.Carbohydr. polym., 2013, 93(2): 582-588.
[141]LeCorre D, Vahanian E, Dufresne A, Bras J. Enzymatic pretreatment for preparing starch nanocrystals.Biomacromolecules, 2011, 13(1): 132-137.
[142]Lin N, Huang J, Chang P R, Anderson D P, Yu J. Preparation, modification, and application of starch nanocrystals in nanomaterials: A review.J. Nanomaterials, 2011, 573687(13pages).
[143]Wang Y J, Truong V D, Wang L. Structures and rheological properties of corn starch as affected by acid hydrolysis.Carbohydr. Polym., 2003, 52(3): 327-333.
[144]Angellier-Coussy H, Putaux J L, Molina-Boisseau S, Dufresne A, Bertoft E, Perez S. The molecular structure of waxy maize starch nanocrystals.Carbohydr. Res., 2009, 344(12): 1558-1566.
[145]Namazi H, Dadkhah A. Convenient method for preparation of hydrophobically modified starch nanocrystals with using fatty acids.Carbohydr. Polym., 2010, 79(3): 731-737.
[146]Song S, Wang C, Pan Z, Wang X. Preparation and characterization of amphiphilic starch nanocrystals.J. Appl. Polym. Sci., 2008, 107(1): 418-422.
[147]Zheng H, Ai F, Chang P R, Huang J, Dufresne A. Structure and properties of starch nanocrystal-reinforced soy protein plastics. Polym. Composit., 2009, 30(4): 474-480.
[148]Yu J, Ai F, Dufresne A, Gao S, Huang J, Chang P R. Structure and Mechanical Properties of Poly (lactic acid) Filled with (Starch nanocrystal)-graft-poly (ε-caprolactone). Macromol. Mater. Eng., 2008, 293(9): 763-770.
[149]Chen Y, Cao X, Chang P R, Huneault M A. Comparative study on the films of poly (vinyl alcohol)/pea starch nanocrystals and poly (vinyl alcohol)/native pea starch.Carbohydr. Polym., 2008, 73(1): 8-17.
[150]Chen G, Wei M, Chen J, Huang J, Dufresne A, Chang P R. Simultaneous reinforcing and toughening: New nanocomposites of waterborne polyurethane filled with low loading level of starch nanocrystals.Polymer, 2008, 49(7): 1860-1870.
[151]Namazi H, Dadkhah A. Surface modification of starch nanocrystals through ring-opening polymerization of ε-caprolactone and investigation of their microstructures. J. Appl. Polym. Sci., 2008, 110(4): 2405-2412.
[152]Ren L, Jiang M, Wang L, Zhou J, Tong J. A method for improving dispersion of starch nanocrystals in water through crosslinking modification with sodium hexametaphosphate.Carbohydrate polymers, 2012, 87(2): 1874-1876.
[153]Wei B, Hu X, Li H, Wu C, Xu X, Jin Z, Tian Y. Effect of pHs on dispersity of maize starch nanocrystals in aqueous medium.Food Hydrocolloids, 2014, 36: 369-373.
[154]Wang Q Q, Zhu J Y, Reiner R S, Verrill S P, Baxa U, McNeil S E. Approaching zero cellulose loss in cellulose nanocrystal (CNC) production: recovery and characterization of cellulosic solid residues (CSR) and CNC.Cellulose, 2012, 19(6): 2033-2047.
[155]Zhu J Y, Sabo R, Luo X. Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers.Green Chem., 2011, 13(5): 1339-1344.
[156]Saito T, Okita Y, Nge T T, Sugiyama J, Isogai A. TEMPO-mediated oxidation of native cellulose: Microscopic analysis of fibrous fractions in the oxidized products.Carbohydr. Polym., 2006, 65(4): 435-440.