![复旦大学数学系《数学分析》(第3版)(上册)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/631/27032631/b_27032631.jpg)
2.3 名校考研真题详解
一、判断题
1.若而
收敛
,则
必收敛.[上海交通大学研]
【答案】对
【解析】若都发散,有
而
,由两边夹法则,
二、解答题
1.证明收敛数列的极限惟一.[中南大学研]
证明:反证法.设的极限不惟一,为α和β(α≠β),不妨设α>β.由ε的任意性,取
.则对ε,存在N,对任意的n>N,有
,所以
同时还有
,矛盾.故极限惟一.
2.求下列极限:
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1867.jpg?sign=1739127928-z79fUpOI3B6pVaHry6bEV3wy6UHXcryE-0-fd3e13e78d47559310e5ece5583d0823)
[浙江师范大学研]
解:(1)
(2)
(3)因为所以由两边夹法则可得极限为1.
(4)
3.若证明:
[中国地质大学2006研]
证明:因为
,
所以对任意的ε,存在N,当n>N时,有,ε任意小,使q-ε<1,q+ε<1,则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1876.jpg?sign=1739127928-n8MWYD4A5pIn0m8CI8F4ZqvA9zcnr8O1-0-cb324769ac0b0a53fb65d0ced99f7fd5)
4.求,其中
[厦门大学研]
解:由的表达式知
从而由数学归纳法知
,又有
所以
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1883.jpg?sign=1739127928-qvSeAKkGN7ECbMXugjEVofMlDPISwuCm-0-aa4d4ef3f8f8b62c366eb3058c9e0c99)
由此递推关系式及知
为单调递增数列且有界,所以
收敛,记
,则
,解得
故
5.用语言证明:
.[重庆大学研]
证明:对任意的ε,存在,当
时,有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1894.jpg?sign=1739127928-rn26etoopkV4oWUC85Gmm1poJoPC5hjO-0-23d9217ae9e82eba2585c6c39640da0b)
6.用Heine定理及数列极限的惟一性定理证明函数极限的惟一性定理:若函数极限存在,则极限惟一.[天津大学2006研]
证明:假设a和b都是f(x)当时的极限,即
.由Heine定理知,对任意的
有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1899.jpg?sign=1739127928-kE7V2RCYbl6UWaD5oiTSqtzzGVzgtVhI-0-6d3fb2a91f7a7ffa55f8d9a54a92ef60)
又由数列极限的惟一性定理知a=b,故若函数极限存在,则极限惟一.
7.求.[华南理工大学研]
解:因为
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1902.jpg?sign=1739127928-Oawr0hpOfty9odT3aRV5sAXIg4U37AM5-0-13b79d19caa03248f7708d454ff3920d)
又因为
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1903.jpg?sign=1739127928-oi9OF6fyiBXtPY8437A8YSJAxshOBhLk-0-40fd5f3c1aed1d5ba2c7261e81c904cd)
所以
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1904.jpg?sign=1739127928-b6a9HGHlpSCubmqj7ezlGneJaRJKdM3p-0-1c2061ff28c5cee66420a7bf1ae34fa2)
8.求下列各题的极限
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1905.jpg?sign=1739127928-17AFGXtVZzOSHJO2ixw6Iov24kTXifTm-0-975e4ef4310a4247725277bfbe963c2d)
[北京师范大学研]
解:
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1908.jpg?sign=1739127928-ycBBynfWgL1jMTRAyGDsF8LGrvC2CYLy-0-1c0645d21c35233ec7eb8c8b5cb94e0d)
(3)方法1:
令,则
,等价于
,所以
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1912.jpg?sign=1739127928-9jgRfgcOdPDHg5f8eYDvmsVZaOZIWrCR-0-60ce99de6dfe0b47a557f13a70f0fa30)
方法2:
取
时,
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1915.jpg?sign=1739127928-5KorHO4DV7WuUqK4dkHixruFKuVeVYAv-0-fe7e3021125172b7eba2a3f149bf0a6f)
(4)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1917.jpg?sign=1739127928-Upp1hupDGe7hE0aHr18SR5Tylul0i763-0-ace4859708cf2f0ccded3e30ca7f128c)
不存在.
(5)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1918.jpg?sign=1739127928-5vJRPoyeGh6QBPuT5n23SzvWaybxoycn-0-e7221178b6d297c9adb79b23f30d99e2)
9.设,则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1920.jpg?sign=1739127928-cRJCDBVudrj5B7hZybiapVnKOS85pT1U-0-a5ccbc4c0e2a50ba270e755144791f3c)
[中国科学院研]
证:(1)由假设知为单调递增的正数列.若
有界,则
存在,且l>0.
,两边取极限得,
矛盾.
即证无界,又由于
单调递增,
(2)令,则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1930.jpg?sign=1739127928-azgPVAUXaay7xP6D5c3N8HCXVKT3avDU-0-3735aa840ec5aca73dcc81e2ad2d21b6)
10.证明:在x=4处连续(用ε-δ语言证明).[天津大学2006研]
证明:由于
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1932.jpg?sign=1739127928-q9vnJPiMg45nv3iumElx5an9wsSXyXKe-0-303b817082fe8d517e58f4594da2ae15)
对于任意的ε>0,取,则当
时,有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1935.jpg?sign=1739127928-pmMwq6uiZvoZJYjAfyoOZoCk3Du2WN8V-0-4b696a3223af94135d89e76a6ff8cbff)
所以f(x)在x=4处连续.
11.设f(x)为[a,b]上的增函数,其值域为[f(a),f(b)],证明:f(x)在[a,b]上连续.[江苏大学2006研]
证明:反证法.不妨设在处间断,由于f(x)为[a,b]上的增函数,故
只能是第一类间断点,则
及
中至少有一个大于零,不妨设
.于是,由函数f(x)的单调性知,f(x)无法取到
和
之间的数值.这与题设f(x)的值域为[f(a),f(b)]矛盾.从而f(x)在[a,b]上连续.
12.设f(x)定义在[a,b]上有第一类间断点,证明:f(x)在[a,b]上有界.[大连理工大学2006研]
证明:反证法.若f(x)在[a,b]上无界,即对任意的M,存在,使
,由M的任意性,取M=n,相应的存在
,使
.即
,与f(x)定义在[a,b]上且有第一类间断点矛盾,故f(x)在[a,b]上有界.
13.证明在(0,+∞)上不一致连续,但对任意的δ>0,φ(x)在[δ,+∞)上一致连续.[南京理工大学2006研]
证明:取,显然有
,所以φ(x)在(0,+∞)上不一致连续.当
时,由于
,所以由中值定理知
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1953.jpg?sign=1739127928-lAz2qm5XlaT5JWFITAj85DlQbVFwn3Uk-0-ab1bc07e976ca19d95d290c8eb8a4977)
故对任意的δ>0,φ(x)在上一致连续.
14.f(x)在[a,b]上连续,存在且
,使得对任意的x有
,证明:f(x)为线性函数.[浙江大学2006研]
证明:先证,对任意的ε>0,令
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1959.jpg?sign=1739127928-98ir40W35Af5XAv41i3Og5b9LzHYA1Gb-0-67e50f2a6716b8500d7528c7ef0488ea)
显然G(a)=G(b)=0,可以证明G(x)≤0,否则存在,使
.由于G(x)∈C[a,b],必存在最大值,不妨设
为最大值点.存在δ>0,当
时,有
,则
与
矛盾,所以
,即
.由ε的任意性,令
,得到
,同理可证
,所以
,f(x)是线性函数.
15.设f(x)在[a,a+2α]上连续,证明:存在,使得
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1973.jpg?sign=1739127928-EgfpQZyGUIAQQlXgv9Zm5tZtGbeQjrdx-0-0e90de03dcc0052988fb082cbd22d853)
成立.[北京大学研]
证明:令,则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1976.jpg?sign=1739127928-vq41aH5N8Bwg08U6RGQeA17GE6RhS2d8-0-59d13f7786b6d2006d50bff4e00b15cb)
所以由零点定理,一定存在使F(x)=0,结论得证.
16.设,讨论f[g(x)]的连续性.[湖南大学研]
解:当时,
当时,
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1983.jpg?sign=1739127928-x2QwOEQ2Up3Cjc8PMqBJu2ITbrehLHyi-0-9ef207ea0b346575d05794a1ab4b592d)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1984.jpg?sign=1739127928-vCLPz3Mvqz7SmxhQu3edpNUCyBZIZ1GZ-0-ae9971a263a9f85f872082a383e8caf4)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1985.jpg?sign=1739127928-va9D6ivFcxhKgc3qrYyMyUEPTNL297b6-0-2559ca104da832003eab65ff5288d717)
在
点都不连续,在其它点上都连续.