![线性代数与几何(独立院校用)](https://wfqqreader-1252317822.image.myqcloud.com/cover/243/26179243/b_26179243.jpg)
上QQ阅读APP看书,第一时间看更新
1.1.2 三阶行列式
利用消元法解三元线性方程组
![](https://epubservercos.yuewen.com/326296/14615860105723106/epubprivate/OEBPS/Images/img00010006.jpg?sign=1739581236-b4d3JwKJiMDmrTiRFybVxU9T0Q3zsoB6-0-adc2000030d87aaec32917d103d36a59)
![](https://epubservercos.yuewen.com/326296/14615860105723106/epubprivate/OEBPS/Images/img00010007.jpg?sign=1739581236-aXjdY70KL3fe8bh2kOXVo2ggzex8heLk-0-4799fd4c37a0e78be582d2fc9f2cb32a)
(x2,x3的表达式略)
将代数式a11a22a33+a12a23a31+a13a21a32-a11a23a32-a12a21a33-a13a22a31用符号表示为
![](https://epubservercos.yuewen.com/326296/14615860105723106/epubprivate/OEBPS/Images/img00010008.jpg?sign=1739581236-zrwlTbD5XlaWsHMK5VVrWFVbh4VhZTmC-0-c0b21a7d28c2334fcce135bb8788b2ef)
![](https://epubservercos.yuewen.com/326296/14615860105723106/epubprivate/OEBPS/Images/img00011001.jpg?sign=1739581236-iiMpYDVTlrQf122QumNN6hkQfX0snOWS-0-0bd480a111abce4fc6209eee189060f2)
当三阶行列式
![](https://epubservercos.yuewen.com/326296/14615860105723106/epubprivate/OEBPS/Images/img00011002.jpg?sign=1739581236-5mlqhSZservihnX951DFuIdENYYtJSDi-0-95827ac810d1b3228a83cd30ab1fda54)
时,与二元线性方程组类似,上述三元线性方程组有唯一解,解为
![](https://epubservercos.yuewen.com/326296/14615860105723106/epubprivate/OEBPS/Images/img00011003.jpg?sign=1739581236-3KTXL3gkURyCtOJuEplo4EO6Xzxz5r2C-0-115381e35c0a6c3381f3c9544700f716)
其中
![](https://epubservercos.yuewen.com/326296/14615860105723106/epubprivate/OEBPS/Images/img00011004.jpg?sign=1739581236-KbxYEfhKe6QsB2XGSPH6jTztdoUxZnha-0-d6b1bbfc9bab2152b71689d8b9857ac7)
注 (1)三阶行列式的计算方法:
![](https://epubservercos.yuewen.com/326296/14615860105723106/epubprivate/OEBPS/Images/img00011005.jpg?sign=1739581236-y88iQh5FXKQSr6gjAem5aqK36GiNnvrD-0-e874cf4e44060d310b13ac6c4e689b80)
三阶行列式是六项的代数和,沿主对角线方向(实线)三个元素相乘取正号,沿次对角线方向(虚线)三个元素相乘取负号,这种方法也称作对角线法则,如图1.1所示.
(2)二、三阶行列式的对角线法则并不能推广到更高阶行列式.
![](https://epubservercos.yuewen.com/326296/14615860105723106/epubprivate/OEBPS/Images/img00011006.jpg?sign=1739581236-hLGfbrjJQ5Fv0q7EhSW5gA8eD8ArDXgd-0-760a244c7aab1b97f21e3d0c8d1a802e)
图 1.1
例1 用对角线法则计算行列式
![](https://epubservercos.yuewen.com/326296/14615860105723106/epubprivate/OEBPS/Images/img00011007.jpg?sign=1739581236-3qrjZda2qEH9KKpGddoHGZ2mnfh7cHKR-0-f9f2ce855cf4ef715891dfee9f591fa2)
解 D=2×3×6+(-5)×(-3)×4+0×1×(-1)-0×3×4-(-5)×1×6-2×(-3)×(-1)=120.
例2 用对角线法则计算行列式
![](https://epubservercos.yuewen.com/326296/14615860105723106/epubprivate/OEBPS/Images/img00011008.jpg?sign=1739581236-ZXzwd1uQncCC57DKyOykLDk43ecCEYMa-0-1f61b8a32d6ab7516eb06a3ba467f083)
解 D=bc2+ca2+ab2-ac2-ba2-cb2
=(a-b)(b-c)(c-a).
例3 解线性方程组
![](https://epubservercos.yuewen.com/326296/14615860105723106/epubprivate/OEBPS/Images/img00012001.jpg?sign=1739581236-Dc1lg20S3ElCqRa04GvdfsqKBGa4EBfp-0-cc2acc06acd15d9e05daa548a5d37417)
解 系数行列式
![](https://epubservercos.yuewen.com/326296/14615860105723106/epubprivate/OEBPS/Images/img00012002.jpg?sign=1739581236-IlO05fP0vUWHwSG21JeH4FhFEpZjKWkh-0-64cf1e6c9b5102c54680b41b3ed20080)
因此有解,再计算D1,D2,D3:
![](https://epubservercos.yuewen.com/326296/14615860105723106/epubprivate/OEBPS/Images/img00012003.jpg?sign=1739581236-zevvvRUrcB5JWwNRzRwjwKjgvmOuKnYb-0-df1e8d93da18276f37eb282636569b04)
代入公式得
![](https://epubservercos.yuewen.com/326296/14615860105723106/epubprivate/OEBPS/Images/img00012004.jpg?sign=1739581236-8Wzhnm0Gmfelp8v2XUtNJ61mRPZfGQBh-0-318b1dace09011397f3b7e7b4b2906e0)
在这一章我们要把这个结果推广到n个方程的n个未知数的线性方程组
![](https://epubservercos.yuewen.com/326296/14615860105723106/epubprivate/OEBPS/Images/img00012005.jpg?sign=1739581236-5rBqUoH22jnhW4sUB2A6Nrn9SK5wJaFB-0-b8aa8240d7d1a29af6fa657fd33ded3f)
的情形.这种解线性方程组的方法将在1.6节中提到.为此,首先给出n阶行列式的定义并讨论它的性质,进而计算n阶行列式.