参考文献
[1] Friend R H, Gymer R W, Holmes A B, et al. Electroluminescence in conjugated polymers[J]. Nature, 1999, 397(6715):121-128.
[2] Shinohara H, Saitoh Y. Endohedral metallofullerenes[J]. Reports on Progress in Physics, 2000, 63(6):843.
[3] Popov A A, Yang S, Dunsch L. Endohedral fullerenes[J]. Chemical Reviews, 2013, 113(8):5989-6113.
[4] Lu X, Akasaka T, Nagase S. Carbide cluster metallofullerenes: structure, properties, and possible origin[J]. Accounts of Chemical Research, 2013, 46(7):1627-1635.
[5] Yang S, Wei T, Jin F. When metal clusters meet carbon cages: endohedral clusterfullerenes[J]. Chemical Society Reviews, 2017, 46(16).
[6] Kroto H W, Allaf A W, Balm S P. C60: Buckminsterfullerene[J]. Nature, 1985, 318(6042):162-163.
[7] Chai Y, Guo T, Jin C, et al. Fullerenes with metals inside[J]. Journal of Physical Chemistry, 1991, 95(20):557-570.
[8] Alvarez M M, Gillan E G, Holczer K, et al. Lanthanum carbide (La2C80): a soluble dimetallofullerene[J]. Journal of Physical Chemistry, 1991, 95(26):10561-10563.
[9] Gillan E G, Yeretzian C, Min K S, et al. Endohedral rare-earth fullerene complexes[J]. Journal of Physical Chemistry, 1992, 96(17):6869-6871.
[10] Moro L, Ruoff R S,Becker C H, et al. Studies of metallofullerene primary soots by laser and thermal desorption mass spectrometry[J]. Journal of Physical Chemistry,1993,97(26):6801-6805.
[11] Stevenson S, Rice G, Glass T, et al. Small-bandgap endohedral metallofullerenes in high yield and purity[J]. Nature, 1999, 401(6748):55-57.
[12] Wang C R, Kai T, Tomiyama T, et al. A scandium carbide endohedral metallofullerene: (Sc2C2)@C84[J]. Angewandte Chemie International Edition, 2001, 40(2):397-399.
[13] Stevenson S, Mackey M A, Stuart M A, et al. A distorted tetrahedral metal oxide cluster inside an lcosahedral carbon cage. Synthesis, isolation, and structural characterization of Sc4(μ3-O)2@Ih-C80[J]. Journal of the American Chemical Society, 2008,130(36):11844-11845.
[14] Mercado B Q, Olmstead M M, Beavers C M, et al. A seven atom cluster in a carbon cage, the crystallographically determined structure of Sc4(μ3-O)3@Ih-C80[J]. Chemical Communications, 2010, 46(2):279-281.
[15] Heath J R, O’Brien S C, Zhang Q, et al. Lanthanum complexes of spheroidal carbon shells[J]. Journal of the American Chemical Society, 1985, 107(25):7779-7780.
[16] Robert D Johnson, Mattanjah S de Vries, Jesse Salem, et al. Electron paramagnetic resonance studies of lanthanum-containing C82[J]. Nature, 1992, 355(6357):239-240.
[17] Hisanori Shinohara, Hiroyasu Sato, Masato Ohkohchi, et al. Encapsulation of a scandium trimer in C82[J]. Nature, 1992, 357(6373):52-54.
[18] Hisanori Shinohara, Hiroyasu Sato, Yahachi Saito, et al. Mass spectroscopic and ESR characterization of soluble yttrium-containing metallofullerenes YC82 and Y2C82[J]. Journal of Physical Chemistry, 1992, 96(9):3571-3573.
[19] Gillan E G, Yeretzian C, Min K S, et al. Endohedral rare-earth fullerene complexes[J]. Journal of Physical Chemistry, 1992, 96(17):6869-6871.
[20] Wang L S, Alford J M, Chai Y, et al. The electronic-structure of Ca@C60[J].Chemistry Physics Letters, 1993, 207(4-6):354-359.
[21] Dennis T J S, Shinohara H. Production and isolation of the C80-based group 2 incar-fullerenes: iCaC80, iSrC80 and iBaC80[J]. Chemical Communications,1998(8):883-884.
[22] Reich A, Panthöfer M, Modrow H, et al. The structure of Ba@C74[J]. Journal of the American Chemical Society, 2004, 126(44):14428-14434.
[23] Bolskar R D, Benedetto A F, Husebo L O, et al. First soluble M@C60 derivatives provide enhanced access to metallofullerenes and permit in vivo evaluation of Gd@C60[C(COOH)2]10 as a MRI contrast agent[J]. Journal of the American Chemical Society, 2003, 125(18):5471-5478.
[24] Wakahara T, Nikawa H, Kikuchi T, et al. La@C72 having a non-IPR carbon cage[J]. Journal of the American Chemical Society, 2006, 128(44):14228-14229.
[25] Nikawa H, Yamada T, Cao B, et al. Missing metallofullerene with C80 cage[J]. Journal of the American Chemical Society, 2009, 131(31):10950-10954.
[26] Yamada M, Nakahodo T, Wakahara T, et al. Positional control of encapsulated atoms inside a fullerene cage by exohedral addition[J]. Journal of the American Chemical Society, 2005, 127(42):14570-14571.
[27] Yamada M, Mizorogi N, Tsuchiya T, et al. Synthesis and characterization of the D5h isomer of the endohedral dimetallofullerene Ce2@C80: two-dimensional circulation of encapsulated metal atoms inside a fullerene cage[J]. Chemistry —A European Journal, 2009, 15(37):9486-9493.
[28] Wang C R, Kai T, Tomiyama T, et al. Materials science: C66 fullerene encaging a scandiumdimer[J]. Nature, 2000, 408(6811):426-427.
[29] Dunsch L, Bartl A, Georgi P, et al. New metallofullerenes in the size gap of C70 to C82: From La2@C72 to Sc3N@C80[J]. Synthetic Metals, 2001, 121(1-3):1113-1114.
[30] Mercado B Q, Jiang A, Yang H, et al. Isolation and structural characterization of the molecular nanocapsule Sm2@D3d(822)-C104[J]. Angewandte Chemie International Edition, 2009, 48(48):9114-9116.
[31] Stevenson S, Fowler P W, Heine T, et al. Materials science: A stable non-classical metallofullerenefamily[J]. Nature, 2000, 408(6811):427-428.
[32] Dunsch L, Yang S. Metal nitride cluster fullerenes: their current state and future prospects[J]. Small, 2007, 3(8):1298-1320.
[33] Beavers C M, Zuo T, Duchamp J C, et al. Tb3N@C84: An improbable, egg-shaped endohedral fullerene that violates the isolated pentagon rule[J]. Journal of the American Chemical Society, 2006, 128(35):11352-11353.
[34] Chaur M N, Melin F, Elliott B, et al. New M3N@C2n endohedral metallofullerene families (M=Nd, Pr, Ce; n=40-53): expanding the preferential templating of the C88 cage and approaching the C96 cage[J]. Chemistry—A European Journal, 2008, 14(15):4594-4599.
[35] Marilyn M. Olmstead, Ana de BettencourtDias,Duchamp J C, et al. Isolation and crystallographic characterization of ErSc2N@C80: an endohedral fullerene which crystallizes with remarkable internal order[J]. Journal of the American Chemical Society, 2000, 122(49):12220-12226.
[36] Tao W, Song W, Xing L, et al. Entrapping a group-ⅤB transition metal, vanadium, within an endohedral metallofullerene: VxSc3–xN@Ih-C80 (x=1, 2)[J]. Journal of the American Chemical Society, 2016, 138(1):207-214.
[37] Kai Tan, Lu X. Electronic structure and redox properties of the open-shell metal−carbide endofullerene Sc3C2@C80: a density functional theory investigation[J]. Journal of Physical Chemistry A, 2006, 110(3):1171-1176.
[38] Wang T S, Chen N, Xiang J F, et al. Russian-doll-type metal carbide endofullerene: synthesis, isolation, and characterization of Sc4C2@C80[J]. Journal of the American Chemical Society, 2009, 131(46):16646-16647.
[39] Takashi Inoue, Tetsuo Tomiyama, Toshiki Sugai, et al. Trapping a C2 radical in endohedral metallofullerenes: synthesis and structures of (Y2C2)@C82 (Isomers Ⅰ, Ⅱ, and Ⅲ)[J]. Journal of Physical Chemstry B, 2004, 108(23):7573-7579.
[40] Valencia R, Rodríguezfortea A, Stevenson S, et al. Electronic structures of scandium oxide endohedral metallofullerenes, Sc4(μ3-O)n@Ih-C80(n=2,3)[J]. Inorganic Chemistry, 2009, 48(13):5957-5961.
[41] Lothar Dunsch, Shangfeng Yang, Lin Zhang, et al. Metal sulfide in a C82 fullerene cage: a new form of endohedral clusterfullerenes[J]. Journal of the American Chemical Society, 2010, 132(15):5413-5421.
[42] Wang T S,Feng L,Wu J Y, et al. Planar quinary cluster inside a fullerene cage: synthesis and structural characterizations of Sc3NC@C80-Ih[D]. Journal of the American Chemical Society,2010,132(46):16362-16364.
[43] Wu J, Wang T, Ma Y, et al. Synthesis, isolation, characterization, and theoretical studies of Sc3NC@C78-C2[J]. Journal of Physical Chemistry C, 2011, 115(48):23755-23759.
[44] Wang Y, Moralesmartínez R, Zhang X, et al. Unique four-electron metal-to-cage charge transfer of Th to a C82 fullerene cage: complete structural characterization of Th@C3v(8)-C82[J]. Journal of the American Chemical Society, 2017, 139(14):5110-5116.
[45] Junghans K, Rosenkranz M, Popov A A. Sc3CH@C80: selective13 C enrichment of the central carbon atom[J]. Chemical Communications, 2016, 52(39):6561.
[46] Melin F, Chaur M N, Engmann S, et al. ChemInform abstract: the large Nd3N@C2n(40≤n≤49) cluster fullerene family: preferential templating of a C88 cage by a trimetallic nitride cluster[J].Angewandte Chemie International Edition,2007,46(47):9032-9035.
[47] Katrin Junghans, Kamran B Ghiassi, Nataliya A. Samoylova, et al. Synthesis and isolation of the titanium-scandium endohedral fullerenes—Sc2TiC@Ih-C80, Sc2TiC@D5h-C80and Sc2TiC2@Ih-C80:metal size tuning of the TiⅣ/TiⅢredox potentials[J]. Chemistry—A European Journal, 2016, 22(37):13098-13107.
[48] Li F, Chen N, Mulet-Gas M,et al. Ti2S@D3h(24109)-C78: a sulfide cluster metallofullerene containing only transition metals inside the cage. Chemical Science, 2013, 4: 3404-3410.
[49] Yang S, Chen C, Liu F, et al. An improbable monometallic cluster entrapped in a popular fullerene cage: YCN@Cs(6)-C82. Scientific Reports, 2013, 3(1): 1487-1492.
[50] Liu F, Gao C, Deng Q,et al. Triangular monometallic cyanide cluster entrapped in carbon cage with geometry-dependent molecular magnetism. Journal of the American Chemical Society, 2016, 138(44): 14764-14771.
[51] Liu F, Wang S, Guan, J,et al. Putting a terbium-monometallic cyanide cluster into the C82 fullerene cage: TbCN@C2(5)-C82. Inorganic Chemistry, 2014, 53(10): 5201-5205.
[52] Tan Y, Xie S, Huang R, et al. The stabilization of fused-pentagon fullerene molecules. Nature Chemistry, 2009, 1 (6): 450-460.
[53] Mercado B Q, Beavers C M, Olmstead M M,et al. Is the isolated pentagon rule merely a suggestion for endohedral fullerenes? The structure of a second egg-shaped endohedral fullerenes Gd3N@Cs(39663)-C82. Journal of the American Chemical Society, 2008, 130(25): 7854-7855.
[54] Beavers C M, Zuo T, Duchamp J C,et al.Tb3N@C84: an improbable, egg-shaped endohedral fullerene that violates the isolated pentagon rule. Journal of the American Chemical Society, 2006, 128(35): 11352-11353.
[55] Chen N, Mulet-Gas M, Li Y,et al. Sc2S@C2(7892)-C70: a metallic sulfide cluster inside a non-IPR C70 cage. Chemical. Science, 2013, 4(1): 180-186.
[56] Chen N, Beavers C M, Mulet-Gas M,et al. Sc2S@Cs(10528)-C72: a dimetallic sulfide endohedral fullerene with a non isolated pentagon rule cage. Journal of the American Chemical Society, 2012, 134(18): 7851-7860.
[57] Zhang Y, Ghiassi K B, Deng Q,et al. Synthesis and structure of LaSc2N@Cs(hept)-C80 with one heptagon and thirteen pentagons. Angewandte Chemie International Edition, 2015, 54: 495-499.
[58] Akasaka T, Nagase S, Kobayashi K,et al.13C and 139La NMR studies of La2@C80: first evidence for circular motion of metal atoms in endohedral dimetallofullerenes. Angewandte Chemie International Edition in English, 1997, 36 (15): 1643-1645.
[59] Lu X, Nakajima K, Iiduka Y,et al. Structural elucidation and regioselective functionalization of an unexplored carbide cluster metallofullerene Sc2C2@Cs(6)-C82. Journal of the American Chemical Society, 2011, 133 (48): 19553-19558.
[60] Kurihara H,Lu X, Iiduka Y,et al.X-ray structures of Sc2C2@C2n(n=40-42): in-depth understanding of the core-shell interplay in carbide cluster metallofullerenes. Inorganic Chemistry, 2011, 51 (1): 746-750.
[61] Kurihara H, Lu X, Iiduka Y,et al. Sc2C2@C80 rather than Sc2@C82: templated formation of unexpected C2v(5)-C80 and temperature-dependent dynamic motion of internal Sc2C2 cluster. Journal of the American Chemical Society, 2011, 133 (8): 2382-2385.
[62] Fu W, Wang X, Azuremendi H, et al. 14N and 45Sc NMR study of trimetallic nitride cluster (M3N)6+ dynamics inside a icosahedral C80 cage. Chemical. Communications, 2011, 47 (13): 3858-3860.
[63] Yamada M, Nakahodo T, Wakahara T,et al. Positional control of encapsulated atoms inside a fullerene cage by exohedral addition. Journal of the American Chemical Society, 2005, 127 (42): 14570-14571.
[64] Yamada M, Mizorogi N, Tsuchiya T,et al. Synthesis and characterization of the D5h isomer of the endohedral dimetallofullerene Ce2@C80: two-dimensional circulation of encapsulated metal atoms inside a fullerene cage. Chemistry—A European Journal,2009, 15 (37): 9486-9493.
[65] Fu W, Xu L, Azurmendi H,et al. 89Y and 13C NMR cluster and carbon cage studies of an yttrium metallofullerene family, Y3N@C2n(n=40-43). Journal of the American Chemical Society, 2009, 131 (33): 11762-11769.
[66] Wang T, Wu J, Xu W,et al. Spin divergence induced by exohedral modification: ESR study of Sc3C2@C80 Fulleropyrrolidine. Angewandte Chemie International Edition,2010, 49 (10), 1786-1789.
[67] Ma Y, Wang T, Wu J, et al. Susceptible electron spin adhering to an yttrium cluster inside an azafullerene C79N. Chemical Communications, 2012, 48 (94): 11570-11572.