Aeroplanes and Dirigibles of War
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

第40章

ARMOURED AEROPLANES

The stern test of war has served to reveal conclusively the fact that aerial craft can be put out of action readily and effectively, when once the marksman has picked up the range, whether the gunner be conducting his operations with an anti-aircraft gun stationed upon the ground, or from a hostile machine. It will be remembered that Flight-Commander Briggs, on the occasion of the daring British raid upon the Zeppelin sheds at Friedrichshafen, was brought to the ground by a bullet which penetrated his fuel tank. Several other vessels, British, German, French, and Russian alike, have been thrown out of action in a similar manner, and invariably the craft which has been disabled suddenly in this way has fallen precipitately to earth in the fatal headlong dive.

Previous to the outbreak of hostilities there was considerable divergence of opinion upon this subject. The general opinion was that the outspread wings and the stays which constituted the weakest parts of the structure were most susceptible to gun-fire, and thus were likely to fail. But practice has proved that it is the driving mechanism which is the most vulnerable part of the aeroplane.

This vulnerability of the essential feature of the flying machine is a decisive weakness, and exposes the aviator to a constant menace. It may be quite true that less than one bullet in a thousand may hit the machine, but when the lucky missile does find its billet its effect is complete. The fact must not be overlooked that the gunners who work the batteries of anti-aircraft guns are becommg more and more expert as a result of practice, so that as time progresses and improved guns for such duty are rendered available, the work of the aviator is likely to become more dangerous and difficult. Experience has proved that the high velocity gun of to-day is able to hurl its projectile or shell to an extreme height--far greater than was previously considered possible--so that considerable discretion has to be exercised by the airman, who literally bears his life in his hands.

Although elaborate trials were carried out upon the testing ranges with the weapons devised especially for firing upon flying machines, captive balloons being employed as targets, the data thus obtained were neither conclusive nor illuminating. The actual experiences of airmen have given us some very instructive facts upon this point for the first time.

It was formerly held that the zone of fire that is to be considered as a serious danger was within a height of about 4,500feet. But this estimate was well within the mark. Airmen have found that the modern projectiles devised for this phase of operations are able to inflict distinctly serious damage at an altitude of 9,000 feet. The shell itself may have but little of its imparted velocity remaining at this altitude, but it must be remembered that when the missile bursts, the contents thereof are given an independent velocity, and a wide cone of dispersion, which is quite sufficient to achieve the desired end, inasmuch as the mechanism of the modern aeroplane and dirigible is somewhat delicate.

It was for this reason that the possibility of armouring the airship was discussed seriously, and many interesting experiments in this field were carried out. At the same time it was decided that the armouring should be effected upon lines analogous to that prevailing in warship engineering. The craft should not only be provided with defensive but also with aggressive armament. This decision was not viewed with general approbation.

It was pointed out that questions of weight would arise, especially in relation to the speed of the machine. Increased weight, unless it were accompanied by a proportionate augmentation of power in the motor, would react against the efficiency and utility of the machine, would appreciably reduce its speed, and would affect its climbing powers very adversely.

In some quarters it was maintained that as a result the machine would even prove unsuited to military operations, inasmuch as high speed is the primary factor in these.

Consequently it was decided by the foremost aviating experts that machines would have to be classified and allotted to particular spheres of work, just as warships are built in accordance with the special duty which they are expected to perform. In reconnaissance, speed is imperative, because such work in the air coincides with that of the torpedo-boat or scout upon the seas.

It is designed to acquire information respecting the movements of the enemy, so as to assist the heavier arms in the plan of campaign. On the other hand, the fighting corsair of the skies might be likened to the cruiser or battleship. It need not possess such a high turn of speed, but must be equipped with hard-hitting powers and be protected against attacking fire.

One attempt to secure the adequate protection against gun-fire from the ground assumed the installation of bullet-proof steel plating, about one fifth of an inch thick, below the tank and the motor respectively. The disposition of the plating was such as to offer the minimum of resistance to the air and yet to present a plane surface to the ground below. So far as it went this protection was completely effective, but it failed to armour the vital parts against lateral, cross and downward fire while aloft.

As the latter is more to be feared than the fire from the ground, seeing that it may be directed at point blank range, this was a decided defect and the armour was subsequently abandoned as useless.