![运动学与动力学](https://wfqqreader-1252317822.image.myqcloud.com/cover/733/677733/b_677733.jpg)
2.2 点的运动方程合成——三种运动方程间的关系
本节分析三种运动——绝对运动、相对运动和牵连运动之间的关系。一般来说,若已知动系运动(即牵连运动)的规律,则可以通过坐标变换来建立点在定系中的坐标(或矢径)与在动系中的坐标(或矢径)的关系。如图2-2所示,定系为O1x1y1z1,沿其坐标轴的单位矢量分别为i1, j1, k1;动系为O2x2y2z2,沿其坐标轴的单位矢量分别为i2, j2, k2。r1为绝对运动的矢径,r2为相对运动的矢径。
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0028_0001.jpg?sign=1739424358-3K0C7spkOgFuskkfDRp5G8kiUsHquxR0-0-56aa982524385fffad00b3b646e97d22)
图2-2 定系与动系中矢径的关系
由图2-2可知
因为
r1=x1i1+y1j1+z1k1, r2=x2i2+y2j2+z2k2
所以
x1i1+y1j1+z1k1=xO2i1+yO2j1+zO2k1+x2i2+y2j2+z2k2
即
(x1-xO2)i1+(y1-yO2)j1+(z1-zO2)k1=x2i2+y2j2+z2k2
将上式两边依次点乘i1, j1, k1,可得
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0029_0001.jpg?sign=1739424358-28cXpqGPqPZi5xYhbkR5obsTYGQYgQ8f-0-7f044f0269bca35e2aea23f9eb90ef0e)
将上式写成矩阵的形式为
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0029_0002.jpg?sign=1739424358-gCC2awMXT58GxSEdgBe6ILkmzKrSSIiG-0-6b5d92ffb9139c2799b6d34e2bcad1e0)
若记
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0029_0003.jpg?sign=1739424358-EF0zr9LlEvF0Mhej8bJMYvtm8M2rKMCM-0-7384da856ea54e976c3464853fed66a5)
则式(2-1)为
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0029_0004.jpg?sign=1739424358-mH4EGXWIuNmKb7jsAA9kxNij03YS1Blu-0-05ac919b8b04fb4c2935c2adf0b50968)
式中,C12称为变换矩阵(transformation matrix)。特殊地,若动系与定系的坐标原点重合,则有
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0029_0005.jpg?sign=1739424358-NZaXNiF32fdbba5pemlsl96gcMYCzwri-0-921f34da299b56d0cd55ec776ffde221)
二维情况的简化
对于二维问题,其定系为Oxy,动系为O'x'y',动点为M,如图2-3所示。其变换矩阵为
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0029_0006.jpg?sign=1739424358-K1fpH09x5bDe3jYoG02gkxbWqU7654Lk-0-edb3cf0da7b45e587b3b0efe39f160ba)
图2-3 二维情况
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0029_0007.jpg?sign=1739424358-ZMXTBwGwCoc02L8GPbxr2CIkCF0lddMo-0-107cef84466dfeecb54e7f9436722aa3)
若绝对运动方程为
x=x(t), y=y(t)
相对运动方程为
x'=x'(t), y'=y'(t)
牵连运动的方程为
xO'=xO'(t), yO'=yO'(t), φ=φ(t)
则不难得到三种运动方程间的关系为
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0030_0001.jpg?sign=1739424358-yHTT4JIrxvOZJNQZL4qGcVP9Of5RYkpo-0-e4179a1e9c7af494bd37dbf18b23b237)
例题2-1
点M相对于动系Ox'y'沿半径为r的圆周以速度v做匀速圆周运动(圆心为O1),动系Ox'y'相对于定系Oxy以匀角速度ω绕点O做定轴转动,如例题图2-1所示。初始时Ox'y'与Oxy重合,点M与O重合。已知OO 1=r,试求点M的绝对运动方程。
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0030_0002.jpg?sign=1739424358-S8mvkHOhbh8TQkq7szvcWsJh38AYRJL2-0-8c8595a9182be8820e81c16bc25ce9c3)
例题图2-1
分析:本题是已知点M的相对运动方程,求点M的绝对运动方程。为此,只要利用式(2-1)写出上述两种运动方程之间的关系即可。
解:
点M的绝对运动方程与相对运动方程满足如下关系:
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0030_0003.jpg?sign=1739424358-GbWAg7glmIuFTK8lfRTPqbkMekkU9krR-0-c163e5fe85787b1b905713adc640cc00)
连接O1M,由图可知:。于是,得点M的相对运动方程为
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0030_0005.jpg?sign=1739424358-JZ2QBDZqtGPZsHPEbTOo0Nm3X359CCCp-0-6c78657732c96f242ce80084c29c0367)
牵连运动的方程为
xO'=xO=0, yO'=yO=0, φ=ωt
利用坐标变换关系式(a),可得点M的绝对运动方程为
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0030_0006.jpg?sign=1739424358-NxHSKcCGHXqB2t4EoEmacCCkhMraK3XC-0-c5b190d3425fe70ccda04444f7ae3afa)
例题2-2
用车刀切削工件的端面,车刀刀尖M沿水平轴x做往复运动,如例题图2-2所示。设Oxy为定坐标系,刀尖的运动方程为x=b sinωt。工件以等角速度ω逆时针方向转动。求车刀在工件圆端面上切出的痕迹。
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0031_0001.jpg?sign=1739424358-hmOSZdXWeff9rXC9CTe9bTErYEetmfls-0-bc62bdf6aad8dc5796138d6da2eb3bf6)
例题图2-2
分析:本题是已知车刀刀尖的绝对运动方程,求刀尖M相对于工件的轨迹方程。
解:
车刀刀尖的绝对运动方程和相对运动方程间的坐标变换关系为
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0031_0002.jpg?sign=1739424358-GDEiUCYmLZ9nivRAwkQNZCt4mXJweLMX-0-cc45020ddc2d38a4fb87da6d0f20d7ee)
取刀尖M为动点,动系固定在工件上,则动点M在动系Ox'y'和定系Oxy中的坐标关系为
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0031_0003.jpg?sign=1739424358-T4DWXthX8pEahXjI57NMx5N02CDwStnq-0-aeb51392d9386b78a560d0c95fec1bc1)
将点M的绝对运动方程(x, y)=(b sinωt, 0)代入式(a)中,得
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0031_0004.jpg?sign=1739424358-SBsCpty3z7B7r2LejtO74WWqYp4cO3l4-0-e5c81495293029cf3acd5a06c1d4d3aa)
上式即为车刀相对于工件的运动方程。
从上式中消去时间t,得刀尖的相对运动轨迹方程为
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0031_0005.jpg?sign=1739424358-Gt6JvE2qyEWwktegQ7E1z84Cu73ZryUG-0-ae9af960e245ed86427a63f8ac4a434b)
可见,车刀在工件上切出的痕迹是一个半径为的圆,该圆的圆心C在动坐标轴Oy'上,圆周通过工件的中心O,如例题图2-2中的虚线所示。