会员
推荐系统技术原理与实践
文亮更新时间:2023-12-21 17:34:41
最新章节:8.8 小结开会员,本书免费读 >
本书系统介绍推荐系统的技术理论和实践。首先介绍推荐系统的基础知识;然后介绍推荐系统常用的机器学习和深度学习模型;接着重点介绍推荐系统的4层级联架构,包括召回、粗排、精排和重排,以及谷歌、阿里巴巴等大型互联网公司在4层级联架构中的模型设计和实现原理;紧接其后介绍多目标排序在推荐系统中的应用,具体介绍阿里巴巴、谷歌等大型互联网公司的实践;最后从不同角度审视推荐系统,介绍公平性问题、知识蒸馏、冷启动等各种前沿实践。本书基于一线研发人员的视角向读者分享推荐系统的实践经验,所有模型结构和前沿实践都在业务场景中落地。本书适合推荐系统领域的从业者、高校科研人员、高校计算机专业学生,以及对推荐系统感兴趣的产品研发人员和运营人员阅读。
品牌:人邮图书
上架时间:2023-06-01 00:00:00
出版社:人民邮电出版社
本书数字版权由人邮图书提供,并由其授权上海阅文信息技术有限公司制作发行
推荐系统技术原理与实践最新章节
查看全部- 8.8 小结
- 8.7 推荐系统的其他问题
- 8.6 深度学习模型的特征选择
- 8.5 推荐系统的冷启动问题
- 8.4 知识蒸馏在推荐系统中的应用
- 8.3 多场景融合实践
- 8.2 推荐系统的公平性问题
- 8.1 推荐系统的应用场景
- 第8章 推荐系统的前沿实践
- 7.7 小结
文亮
主页
同类热门书
最新上架
- 会员
PyTorch深度学习应用实战
《PyTorch深度学习应用实战》以统计学/数学为出发点,介绍深度学习必备的数理基础,讲解PyTorch的主体架构及最新的模块功能,包括常见算法与相关套件的使用方法,例如对象侦测、生成对抗网络、深度伪造、图像中的文字辨识、脸部辨识、BERT/Transformer、聊天机器人、强化学习、自动语音识别、知识图谱等。本书配有大量案例及图表说明,同时以程序设计取代定理证明,缩短学习过程,增加学习乐趣。计算机15.2万字 - 会员
破解深度学习(基础篇):模型算法与实现
本书旨在采用一种符合读者认知角度且能提升其学习效率的方式来讲解深度学习背后的基础知识。本书总计9章,深入浅出地介绍了深度学习的理论与算法基础,从理论到实战全方位展开。前三章旨在帮助读者快速入门,介绍了必要的数学概念和必备工具的用法。后六章沿着深度学习的发展脉络,从最简单的多层感知机开始,讲解了深度神经网络的基本原理、常见挑战、优化算法,以及三大典型模型(基础卷积神经网络、基础循环神经网络和注意力神计算机14.8万字 - 会员
大语言模型:原理、应用与优化
这是一本从工程化角度讲解大语言模型的核心技术、构建方法与前沿应用的著作。首先从语言模型的原理和大模型的基础构件入手,详细梳理了大模型技术的发展脉络,深入探讨了大模型预训练与对齐的方法;然后阐明了大模型训练中的算法设计、数据处理和分布式训练的核心原理,展示了这一系统性工程的复杂性与实现路径。除了基座模型的训练方案,本书还涵盖了大模型在各领域的落地应用方法,包括低参数量微调、知识融合、工具使用和自主智计算机12.1万字 - 会员
PyTorch深度学习与企业级项目实战
《PyTorch深度学习与企业级项目实战》立足于具体的企业级项目开发实践,以通俗易懂的方式详细介绍PyTorch深度学习的基础理论以及相关的必要知识,同时以实际动手操作的方式来引导读者入门人工智能深度学习。《PyTorch深度学习与企业级项目实战》共分18章,内容主要包括人工智能、机器学习和深度学习之间的关系,深度学习框架PyTorch2.0的环境搭建,Python数据科学库,深度学习基本原理,计算机10.8万字 - 会员
AI辅助编程实战
本书深入探讨了AI(人工智能)如何革新软件开发领域,从AI辅助编程的演变、优势与挑战到具体的工具与技术实现,为开发者打开了一个全新的世界。全书共10章,第1章介绍了编程的历史演变和生成式AI的崛起;第2章深入技术细节,解释了AI辅助编程工具的主要功能和工作原理;第3章讨论了提示工程的重要性,以及如何与AI工具进行有效沟通;第4章和第5章通过GitHubCopilot和其他AI编程工具的案例,展示计算机11万字 - 会员
机器学习中的统计思维(Python实现)
机器学习是人工智能的核心,而统计思维则是机器学习方法的核心:从随机性中寻找规律性。例如,利用损失最小化思想制定学习策略,采用概率最大化思想估计模型参数,利用方差对不确定性的捕捉构造k维树,采用贝叶斯公式构建分类决策模型,等等。只有树立正确的统计思维,才能准确高效地运用机器学习方法开展数据处理与分析。本书以统计思维的视角,揭示监督学习中回归和分类模型的核心思想,帮助读者构建理论体系。计算机18万字 - 会员
机器学习的算法分析和实践
本书是一本全面介绍机器学习方法特别是算法的新书,适合初学者和有一定基础的读者。机器学习可以分成三大类别,监督式学习、非监督式学习和强化学习。三大类别背后的算法也各有不同。监督式学习使用了数学分析中函数逼近方法、概率统计中的极大似然方法。非监督式学习使用了聚类和贝叶斯算法。强化学习使用了马尔可夫决策过程算法。机器学习背后的数学部分来自概率、统计、数学分析以及线性代数等领域。虽然用到的数学较多,但是最计算机7.4万字 - 会员
AI数字人原理与实现
本书是一部系统介绍AI数字人技术的专业著作,涵盖了数字人的定义、发展历程、关键技术及应用实践等内容,全书共分3部分。在技术基础部分,首先介绍了数字人的定义、发展历程、分类和应用场景,接着详细解析了数字人系统的架构设计、视觉算法和语音合成技术的原理,以及语义理解和知识表示技术如何提升数字人的智能和表现力。在应用实践部分,带领读者深入探索数字人的创作流程,从内容策划、角色建模到交互设计,每一步都进行了计算机26.2万字 - 会员
基于信息增强的图神经网络学习方法研究
本书深入剖析了图神经网络领域所面临的两大核心挑战:深度加深模型退化和监督信息过度依赖。针对这两大挑战,本书提出了一系列解决思路,涵盖模型结构设计、训练策略优化等方面的内容。全书共7章,第1章主要介绍了图神经网络研究的背景与意义,阐述了近年来国内外网络表示学习与图神经网络的研究现状,分析了图神经网络当前面临的挑战及其主要问题等;第2章主要对图神经网络进行概要论述,包括基础的理论、典型的模型方法及应用计算机8.1万字